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In Thislssue

This issue of Survey Methodology is dedicated to Gordon J. Brackstone, who recently retired from
Statistics Canada. He was Assistant Chief Statistician for the Informatics and Methodology field and
had been chairman of the Survey Methodology management board since 1987. His continuous support
to the journa has been marked by great insight and motivated by a constant desire to foster high
standards of methodology practices. Further, he aso authored severa articles that appeared in the
journal. We wish to express our extreme gratitude to Gordon J. Brackstone.

The current issue contains eight regular papers on a variety of topics, and three short
communications. As mentioned in the previous issue of the journal, we are introducing a new Short
Communications section in Survey Methodology. This section will contain shorter papers, typically
around four pages. Possible topics of short communications include presentation of new ideas without
the full development of a regular paper, brief reports of empirical work, and discussions or
supplements related to other papers published in the journal.

For the past four years the June issue of Survey Methodology has included an invited paper in
honour of Joseph Waksberg. Starting this year, this annual invited paper will be published in the
December issue of the journal, bringing it more in line with the associated Waksberg address delivered
at Statistics Canada’'s annual methodology symposium in the autumn. The author of this year's
Waksberg paper is J.N.K. Rao and his paper will be on the “Interplay Between Sample Survey Theory
and Methods. an Appraisal”.

In the opening paper of this issue, Winglee, Valiant and Scheuren present a new simulation
approach to estimation of error rates for threshold selection in record linkage. For each potential
matched pair there is a vector of comparison outcomes that determines the linkage weight. A
multinomial model is assumed for each comparison outcome, with different multinomial distributions
for true matches and true non-matches. The distributions are estimated from a sample, and then used
to simulate the distributions of the linkage weights for true matches and true non-matches. The method
isillustrated in a case study using data from the U.S. Medical Expenditure Panel Survey (MEPS).

Krewski, Dewanji, Wang, Bartlett, Zielinski and Mallick investigate the effects of record linkage
errors, both false positives and false negatives, on risk estimates in cohort studies. They show
anaytically how linkage errors introduce both bias and additional variability into observed and
expected numbers of deaths, as well as into estimates of standardized mortality ratios and relative risk
regression coefficients. They discuss their results in their conclusions, and point to further work that
needs to be donein this area.

The paper by van den Brakel and Renssen addresses the problem of testing hypotheses between
different survey implementations, such as different questionnaire designs, when a complex sampling
design is used. A design-based theory is developed for cases where the survey implementations are
assigned to subsamples through completely randomized experimental designs or randomized block
experimental designs. The theory also makes use of measurement error models. Design-based Wald
statistics are used to compare the different survey implementations.

Tsuchiya approaches the long-standing problem of asking respondents sensitive questions in an
interesting fashion. Instead of using the randomized response approach that allows little control for
the researcher, he proposes that the item count technique be adapted for sensitive questions. The item
count technique presents the respondent with a list of several phrases, from which the respondent
selects all that apply to him. The researcher constructs the list in two ways: the first list contains the
sensitive phrase while the second list does not. Tsuchiya presents various estimators for this technique
and gives an interesting example related to the Japanese national character.

In the paper by DiZio, Guarnera and Luzi, finite mixture models are used to detect errors that are
due to an incorrect unit of measurement at the collection stage of the survey. In a multivariate context
and assuming that the data are multivariate normal, the procedure can identify which variables are in
error for a given sampled unit. The authors also provide diagnostics for prioritizing cases to be
investigated more deeply through clerical review. The proposed methodology is illustrated through an
example with ssimulated data and an example with real data.

Statistics Canada, Catalogue No. 12-001-XIE
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Chiu, Yucel, Zanutto and Zaslavsky present a method for multiple imputation of missing contextual
variables for use in regression analysis. For each record missing the variable, and for a sample of
complete records, matched cases are selected based on a set of matching variables. The sample of
complete records is then used to estimate a regression adjustment for other variables not included
among the matching variables. The contextual variables for the incomplete records are then multiply
imputed. The authors then show an application to a colorectal cancer study, and use simulations to
compare their approach to three other nonresponse adjustment methods.

Nandram and Choi examine the important problem of nonignorable nonresponse in small-area
estimation of a health status variable. When confronted with an example where the usual estimators
are biased because of the excessive number of nonrespondents, they attempt to account for the
differences through modeling. Nandram and Choi use two nonignorable nonresponse hierarchical
Bayes models, a selection model and a pattern model, to analyze the health data. An important
consideration to their modeling is the incorporation of the input from doctors concerning the
nonresponse pattern and the outcome variable. The results give an accurate non-response adjustment
and a better measure of precision.

Park and Fuller propose a method to reduce the probability of obtaining negative estimation
weights when using a regression estimator. Their method consists of first approximating inclusion
probabilities, conditional on Horvitz-Thompson estimates for a vector of auxiliary variables, and then
using these approximate conditional inclusion probabilities asinitial weightsin a regression estimator.
Their method is shown to work well in a simulation study. The weights obtained from this method are
also compared to weights from quadratic programming, the raking ratio, the logit procedure and
maximum likelihood.

In the first of three short communications included in this issue, Andersson and Thorburn show that
the optimal regression estimator can be expressed as a calibration estimator with an appropriately
chosen distance function. The resulting optimal estimator is asymptotically more efficient than the
usual Generalized Regression (GREG) estimator. A small simulation study illustrates several
situations where the optimal estimator if significantly more efficient than the GREG estimator.

Lynn and Gabler extend the results of Gabler, Hader and Lahiri (volume 25, 1999) on Kish's
expression for the design effect due to clustering. They give a practical approach to estimating Kish's
quantity at the sample design stage when only the total humbers of observations and of clusters are
needed.

Meza and Lahiri examine the limitations of a standard regression model selection criterion,
Mallows dtatistic, for nested error regression models. They show, that while a straightforward
application of Mallows statistic may result inefficient model selection methods, a suitable
transformation of the data may be the answer.

Finally, we would like to inform you that Harold Mantel will now hold the new position of Deputy
Editor. Harold has been part of the Editorial Board for the last 15 years. His dedication to the journal
has been notable and his continuous involvement in the editorial process has been instrumenta in
ensuring that Survey Methodology remains a high quality publication.

M.P. Singh

Statistics Canada, Catalogue No. 12-001-XIE
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A Case Study in Record Linkage

M. Winglee, R. Valliant and F. Scheuren *

Abstract

Record linkage is a process of pairing records from two files and trying to select the pairs that belong to the same entity. The
basic framework uses a match weight to measure the likelihood of a correct match and a decision rule to assign record pairs
as “true” or “fasg” match pairs. Weight thresholds for selecting a record pair as matched or unmatched depend on the
desired control over linkage errors. Current methods to determine the selection thresholds and estimate linkage errors can
provide divergent results, depending on the type of linkage error and the approach to linkage. This paper presents a case
study that uses existing linkage methods to link record pairs but a new simulation approach (SimRate) to help determine
selection thresholds and estimate linkage errors. SimRate uses the observed distribution of data in matched and unmatched
pairs to generate a large smulated set of record pairs, assigns a match weight to each pair based on specified match rules,
and uses the weight curves of the simulated pairs for error estimation.

Key Words: File matching; Linkage error rates; Match weight; Selection threshold; Medical records.

1. Introduction

The basic record linkage framework by Newcombe
Kennedy, Axford and James (1959) and Fellegi and Sunter
(1969) uses a match weight to measure the likelihood of a
correct match and a decision rule to classify record pairs.
The optimal decision rule uses two match weight thresholds
for sdlection (an upper threshold above which a link is
treated as a match and a lower threshold below which alink
is treated as a nonmatch). The choice of these thresholds
depends on the acceptable pre-set linkage error rate and the
requirement to minimize the number of links with
indeterminate status between the two thresholds. Nowadays,
practitioners of computerized linkage systems often use a
single selection threshold to avoid manud intervention of
the indeterminate links. Linkage decisons are typicaly
made automatically after the system is “tuned” to achieve
pre-set error levels. The chalengeisthat current methods to
determine the sdlection threshold and to estimate linkage
errors can produce divergent results depending on the type
of linkage error, the choice of comparison pace, and the
estimation method.

This paper shares our experience with felow practi-
tioners who need a method to guide linkage selection and
eror estimation. Our case study used medical event files
from the US Medical Expenditure Panel Survey (MEPS).
MEPS collects medical expenditure data from both
household respondents and their medical providers. The
purpose is to combine the data from both sources for
supporting annua  estimations of medica utilization and
expenditures (see Agency for Hedthcare Research and
Quality 2001 for more details on MEPS).

Here we discuss the linkage with three sets of annual
medica event files— MEPS 1996, MEPS 1997, and MEPS
1998. Each st consisted of a household file containing
events reported by household respondents for a given year
and a medical provider file containing the corresponding
events reported by medical providers of the household
respondents. On average, approximately 50,000 medical
events were reported for close to 10,000 persons, and
around 15,000 person-provider units each year.

We used two model-based dternatives for linkage error
esimation. One of these uses simulation to develop a
distribution of the weights for various levels of agreement.
This technique, called SimRate, begins by generating
weight distributions for matched and unmatched record
pairs. Using these, SimRate can then provide estimates of
linkage error rates for different threshold levels. The error
rates can then be used as a guide to action and a way to
measure success. SimRate is contrasted with a second
modeling approach created by Belin and Rubin (1995). As
we hope to show, there is arole for both approaches; each
has strengths as il lustrated in the comparisons.

2. MixtureModdsand Smrate
Approaches

The mixture modeling method of linkage error esti-
mation, as presented in Belin and Rubin (1995), has several
attractive features. It is flexible in a sense that the weight
creation process does not have to be considered directly.
Hence, this method can be gpplicable to many different
ways of creating weights. Once a modd is specified, error

1. M. Winglee, Westat, Statistical Group, 1650 Research Boulevard, Rockville, MD 20850-3195, U.SA.; R. Valliant, Joint Program for Survey
Methodology, University of Maryland and University of Michigan; F. Scheuren, NORC, University of Chicago.



4 Winglee, Valliant and Scheuren: A Case Study in Record Linkage

rates can be examined for a continuum of potentia threshold
values and confidence bands can be constructed to monitor
the precision of error estimates (see section 7).

Mixture modeling does have limitations. While the
method provides a particular kind of error rate — the pro-
portion of linked records that are actually unmatched pairs,
overdl false positive and false negative error rates cannot be
estimated since nonlinked pairs are not considered. The
error rate that is estimated is conditional on the set of linked
pairs of records. Furthermore model parameters may be
hard to estimate if the weight distributions for the matched
and unmatched sets are not separable (see Winkler 1994).

A key assumption in the Belin—Rubin approach is that it
is possible to transform the distributions of the weights in
the matched and unmatched sets to make them normal. Now
ared difficulty exigts here in that the transformed weights
may be far from norma when the weight distribution for
ether the matched or unmatched setsis multimodal.

Another critical requirement is to have atraining data set
whose characteristics are very smilar to those that are to be
matched. Without a good training data set, the input para-
meter estimates for the mixture model may be poor,
affecting the final estimated error rates obtained. Based on
our application using annual medica event data repested
over three years, the parameters were not stable over time.
This ingtability necessitated a training set for each year,
making the Belin-Rubin approach impractica in our appli-
cation because of the cost and time it required.

The smulation approach, SmRate, like mixture
modeling, has the ahility to examine different thresholds,
dlowing the user to monitor both the sendtivity and
specificity of the decison rule for selecting linked pairs. As
long as the process used to create match weights can be
redigicaly modeled, customized methods of weight
assignment like the one used in the current case study can be
accommodated. The method does require the generation of
pairs of records using the distribution of characteristics for
the matched and unmatched sets. Some effort is needed to
redigtically generate the populations of pairs. In our work
we have been successful with multinomial modds for
generating these populations.

3. Threshold Weight and Linkage Error
Estimation

Several methods are available in the literature for
selecting true matches and for estimating linkage errors
(eg., Bartlett, Krewski, Wang and Zielinski 1993,
Armsgtrong and Mayda 1993, Bdin 1993, Belin and Rubin
1995 and Winkler 1992, 1995). See Fellegi (1997) for an
overview of evolutions in record linkage, Tepping (1968)
and Larsen and Rubin (2001) for other linking methods, and

Statistics Canada, Catalogue No. 12-001-XIE

Scheuren (1983) for a capture-recapture method to estimate
omission error.

Comparison of estimates from the different approachesis
complicated by the fact that each approach tends to focus on
different error components. In fact, the methods used in the
linkage literature to construct linkage error rates are some-
what inconsistent. Weillugtrate this problem below.

Table 1 shows a 2x2 contingency table tabulating the
numbers of true matched and unmeatched pairs and declared
linked and nonlinked pairs sdlected by linkage systems.
Estimates of linkage error rates can be constructed relative
to the true totals shown in the columns. An estimate of false
positive linkage error rate under the Felegi and Sunter
framework is p=P(A |U)=n,/n,, and that of fase
negative linkage error rate is A = P(A;[M)=n,, /'n,; (see
aso Armstrong and Mayda 1993). These are the rates that
SimRate is designed to estimate. They answer the question —
“Of the set of true matched (or unmatched) pairs, what
proportion is not correctly identified?’

Tablel
A Contingency Table for Evaluating Linkage Errors
Truesst
Declared set Match (M) Unmatch (U)  Declared tota
) My N
Link (A) true positive false postive n,
) Ny Ny
Nonlink (Ag)  fdsenegative  truenegative Noe
Truetota Ny n,, N,

Some linkage evauations have adso considered rates
relative to the declared totas in the rows. For instance,
Gomatam, Carter, Ariet and Mitchell (2002) used n, /n,
and labeled it the positive predictive power of the linkage
system. Others, however, have labeled this as the fase
meatch rate (Belin and Rubin 1995) or false positive declared
rate (Bartlett et al. 1993). Rates congructed in this manner
answer the question —* Of the declared linked (or nonlinked)
pairs, what proportions are wrong?’ Both questions are
important in selecting matched pairs and should be
addressed. That is one of the appeds in employing both
SimRate and Belin—Rubin, if possible.

4. Simrate Weight Distribution
Methodsto Estimate Linkage Error

How to best estimate the linkage errors, given a limited
budget and time schedule, is a difficult question. Accurate
estimation of linkage errors should depend on at least two
factors — the power of the identifying fields to unambi-
guoudy identify eventsthat are true matches and the linkage
method used. Taken together it is then possible, in a given
stting, to specify linkage categories, edtimate agreement
probabilities, and determine match weights.
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Following Newcombe and Kennedy (1962) and Jaro
(1989), we adopt a weight distribution approach in our
gpplication that can take dl these factors into consideration.
The basic step is to first compute the match weight and
order al possible configurations of agreement and dis
agreement outcomes of the comparison fields by match
weight. Then we plot the cumulative distribution function of
the weights for matched and unmatched pairs, and use the
resulting weight chart to determine thresholds to attain
desired levels of false positive and false negative error rates.

An ided method to develop these curves might be to
begin with aset of record pairs for which the truth is known.
If resources are available, we could use a large set of true
meatched pairs, order them by match weight, and observe
what proportion is above or below a given threshold.
Similarly, we could take a large set of pairs, known to be
true unmatched pairs, order them by weights, and again
tabulate the proportion on either side of the threshold. The
proportion of true matched pairs with weights below the
threshold and the proportion of true unmatched pairs with
weights above the threshold would then be estimates of the
error rates associated with the way in which the matching
agorithm isimplemented.

One method to approximate this “ideal” approach (see
aso Bartlett et al. 1993) is to sample record pairs and use
manual review to determine the true match status. Once the
true pairs are known, we can attach the match weights from
whatever linkage system is being used and then develop
cumulative weight distributions, as discussed above. This
method is, of course, subject to the well-known time and
other resource limitations of manual review and is seldom
practica with alarge sample.

An dternative method is to generate the cumulative
weight distributions through simulation. That is the heart of
the SimRate approach. To explain in some detail, denote a
record par by r and a comparison fidd by
v(v=1,...,V fieds). The comparison outcome situationsin
our gpplication included partial agreements and multiple
outcome categories beyond the basic agreement and dis-
agreement categories (see dso Newcombe 1988). There-
fore, we denote that each field v has i =1, ..., ¢, outcome
categories. The outcome indicator is Yy, = (Y- Yivg,)»
avector of indicators showing the category into which pair r
fals. One of the values of y,,; will be 1 and the others O for
each field.

The particular theory supporting the SimRate approach is
to assume that y,,, has one multinomial distribution if pair
r is a matched pair and a different multinomial distribution
if it is an unmatched pair. We can then mode the vy,
vectors as having a multinomial distribution with para-
meters m, =(m,,...,m, ) if the par is a matched par
and parameters u, =(Uy, ..., U, ) if the par is an

5

unmatched pair. Then the probability m, =P (field v
category i agreesin pair r |[r e M) isthe conditional proba-
bility of agreement for field v category I, given that the
record pair r is in the set M of true maiched pairs. In
contrast, the probability u,, = P (field v category i agreesin
pair r|reU) is the conditional probability of agreement
for field v category |, given that the record pair r isin the set
U of true unmatched pairs. Assuming independence of the
matching variables, v=1,...,V, we can secify the joint
probability of y, = (Y, ..., ¥,) if aparrisamatch, as

vV.oq
P(y,Ire M)=TT [T m;".
v=l =1
The corresponding probability of the same configuration of
data, if the pair isreally an unmatched pair, is

V
Py, IreU)=]] I&IUVyI
v=l =1
SmRate uses Monte Carlo smulation methods to
generate alarge number of redlizations of matched pairs and
unmatched pairs using estimates of the probabilities m,; and
u,. For eech smulated pair, a match weight w., which
applies to a given configuration of data, is calculated. For a
given redization y,, aweight w, is computed for the pair
by summing the weights for the randomly generated
categories that the pair fell into. The match weight w, of a

record pair istypically estimated as

VoG v

[

v=l i=1
ALY

e
v=l =1
See section 6 on the match weights used in our simulation.

The cumulative distribution of these weights for the
smulated matched pairs is then plotted as “Sm-M".
Similarly, the reverse cumulative distribution for the
unmatched pairs is plotted to generate “Sim-U" (see Figure
1, section 8, for an example of the simulation curves used in
this study). The smulated proportion of matched pairs
whose weights are below the cutoff is the estimate of the
fase negative error rate. The simulation proportion of
unmatched pairs whose weights are above the cutoff is the
estimate of the false positive error rate.

This approach requires that empirica estimates be made
of the digtributions among the matching variables of both
true matched and true unmatched pairs. Even though the
weight agorithm may involve the assumption of inde-
pendence among matching variables, the actua data may
show dependence. As long as artificia pairs can be gene-
rated that redistically follow the observed distribution of the
data (incorporating any dependencies), then this method
should provide suitable error rate estimates.

w, =log,
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In our case study, we modeled data fields as having inde-
pendent multinomial digtributions, but this may not be
reasonable in other applications. The SimRate concept can
apply to any algorithm where weights and a cutoff point are
used for classification. Thus, methods other than Fellegi and
Sunter (1969), like Belin and Rubin (1995), might also be
evaluated in this way. If methods are needed to ded with
dependent categorica variables, the multivariate multi-
nomia distributions in Johnson, Kotz, and Balakrishnan
(1997, Chapter 26) may be appropriate. However, in appli-
cations smilar to ours, the smplest procedure for
accounting for dependence is to form cross-classifications of
the variables that are related and to estimate probabilities for
each cell in across-table. For example, if two variables with
¢, and c, categories are associated, then we can estimate
the joint probability, p;, for each cell in the ¢, *c, table
and use those in the simulation. Sparse data will naturaly
limit the number of cellsfor which thisisfeasible. But in the
presence of sparse data, the penalty for model failure must
be small.

5. Record Linkage of MEPS Medical
Events

Record linkage of MEPS medical events used five identi-
fying fields. event dates (year, month, day, and day-of-
week), medical condition codes, procedure codes, global-fee
codes, and lengths (number of days) of hospital stay. These
fields are described in more detail in Winglee, Valiant,
Brick and Machlin (2000). A training sample from MEPS
1996 was employed to derive match rules and outcome cate-
gories and to estimate the probabilities of agreement for
each category, dlowing for partiad agreement and value
specific outcomes. The same match rules were repested
each year with minor adjustments of the matching para-
meters.

For the training set we used the linkage system Auto-
match (Matchware 1996) and the unique match agorithm to
select linked pairs. In “unique” matching, a File A record is
optimally linked to only one File B record (Jaro 1989). In
addition, we used the many-to-many match algorithm to
generate a random sample of nonlinked pairs to facilitate
linkage error estimation. However, the methods for edti-
mating error rates, described below, apply to any software
that implements the linkage methods based on match
weights. They are not specific to Automatch.

The tradeoff in determining the selection threshold for
MEPS was between getting a high match rate and limiting
mismatch linkage errors. A high threshold weight would
minimize false positive (mismatch) errors at the expense of
lowering the match rate and losing valuable data collected
from medica providers. On the other hand, a low threshold
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would increase fdse postive error and may affect the
dlocation of expenditure data in a way that would require
specia anaytic techniques to overcome and even then only
with uncertainty. Since both data sources had reported on
ogensibly the same medical events for the same persons
over the same period, the drategy was to maintain a
reasonably high match rate and to conduct a manual review
of a limited number of questionable linked pairs after
selection to assess the analytic impact of fasely accepting
them. Based on this decision the average match rate for the
annual MEPS medical records files was about 85 percent.

The 1996 MEPS training sample M curve, labeled the
“Tra-M" curve, was generated by applying match weights
to “true” matched pairs for a random sample of 500 persons
in MEPS 1996. For these persons, the manua review files
contained 2,507 events from household respondents and
2,804 events from medical providers. Knowledgeable data
managers reviewed the events and selected 1,501 pairs. We
considered these as the true matched pairsin this evaduation.
The manualy matched pairs were assigned the weights
derived from our match specification to generate a cumu-
|ative distribution function.

The 1996 training sample U curve, labeled the “Tra-U”
curve, was generated using a random sample of unmatched
pairs. We used a simple random sampling with replacement
method to select 500 events each from the matching files
and employed a many-to-many match algorithm to generate
al 250,000 possible event pars. For these randomly
selected sets of pairs, the chance of there being any correctly
matched pairs is negligible; thus, the entire set was taken to
consist of unmatched pairs. We applied the match weights
from our matching specification and plotted the “Tra-U”
curve equal to 1 minus the cumulative digtribution of the
weights of these pairs. Figure 1 in section 8 shows both the
Tra-M and Tra-U curves for the 1996 MEPS. The curves
shown in this figure were smoothed using a nonparametric
lowess function (Chamber, Cleveland, Kleiner and Tukey
1983) in S-PLUS 2000 (1999).

6. Simratelmplementationin MEPS

The SmRate weight distribution method used Monte
Calo smulation methods to generate separate sets of
10,000 simulated matched and unmatched pairs for creating
the weight curves. To generate the “Sim-M" weight
distributions we estimated the probabilities m; from linked
pairs assigned by a unique matching agorithm. We used the
“tuned” linkage system to sdlect matched pairs from the
1996 annua matching files and tabulated the observed
frequencies for each outcome category for each of the five
matching fields. The proportion of pairs that fdl into
category i of field v was then used as the estimate M, of the

probability m;;.
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For the unmatched pairs and the “Sim-U" curve, the u,,
probabilities for unmatched pairs were estimated using the
same sample of unmaiched pairs used in creating the
“Tra-U" curve. The differenceis that we used these pairs to
observe the relaive frequencies for each outcome category
for each of the five matching fields among unmatched pairs.
The proportion of pairsthat fell into category i of field vwas
then used asthe estimate ,; of the probability u,;.

For a smulated matched pair, a redlization of the
multinomia random variable y,, was generated for esch
match field. For example, a configuration like (agreement
on event date, agreement on length of hospita stay,
agreement on the array of condition codes, joint agreement
by type of procedure, and value specific agreement for a
global-fee indicator) was generated usng the maich
probabilities m, for each outcome category. Similarly, for
each unmatched pair, a redization was generated of a
category for each of the five fields using the unmatched
probabilities U,; discussed above.

For a given redlizetion y,, aweight w. was computed
for the pair by summing the weights for the randomly
generated categories that the pair fdl into. The actud
weights used in our smulation were adjusted ones that we
specified rather than ones defined directly by the matching
software (see Winglee, et al. 2000). Thus, we are smulating
the way in which matching would actualy be implemented.
To do this we caculated the match weight for both the
matched and unmatched sets of 10,000 pairs and plotted the
simulated match weight functions.

Table 2 shows examples of some the partia agreement
categories used for matching event date and the estimates of
m,,U,, and w, used in SmRate smulation. We defined a
total of 19 outcome categories for matching by event date, 9
categories for duration of hospital stay, 27 categories by
medical procedures, and 3 categories each for medica
conditions and global fee. For example, for the outcome
category exact agreement on event date, the estimate of M,
was 0.69, meaning that 69 percent of the linked pairs had
exact agreement on event date. The estimate of 0, for this
outcome category was 0.003, showing that only 0.3 percent
of the unlinked pair showed agreement on this field. The
match weight for exact agreement on date of event was 8.52
and that for complete disagreement (difference of more than
two weeks gpart and on different day of week) was —6.64.
(see Winglee, et al. 2000 for the match weights by match
fields and outcome categories).

We sdected the match fields that were approximately
independent in this case study. For example, we found no
functional association between the date of medical events
and other match fields like medical condition and length of
hospital stay. For fields such as the indicators for surgery,
radiology, and laboratory procedures, we used chi-square
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tests and found some dependence between the concurrence
of surgery and radiology. To handle this stuation, we
estimated the joint probabilities and specified match rulesto
treat these procedure flags as a single match field (see
section 4 above). Hence, we could then apply the
independent multinomial distribution for simulation.

Table?2
Estimates of Multinomial Probabilies for Matched Pairs
(M) and Unmatched Pairs (G,;), and Match Weights (w;)
for the Match Field Event Date

Match rule for Event Date my; Gy W

Missng 0.031 0.046 0.00
Exact match 0.693 0.003 8.52
Off +/—1 day 0.068 0.006 571
Off +—3 day 0023 0.005 4.09
Off +/-5 day 0.014 0.005 247
Off +/—7 day 0.030 0.006 2.84
Match by day of week only 0014 0034 -364
Disagree 0003 0547 -664

Table 3 shows the results of linkage error estimates from
SimRate and the training curves a the threshold weight of
w=1 for MEPS 1996, MEPS 1997, and MEPS 1998.
SimRate was easy to repeat each year. Repeating the
manual-based weight curves, however, depended in part on
manua review and we had only one reliable training
sample, that for 1996. Note that the linked pairs used in
SimRate will naturaly generate some percentage of false
positives and fase negatives, i.e, some matched and
unmatched pairs are incorrect. Thus, the M, probabilities
computed in this way for the identified fields are subject to
eror. 1t would have been preferable to estimate the m
probabilities from a “truth” set where we were confident
that al matches were correct. However, the manualy
matched training sets we were able to produce were too
smdl to yield stable estimates in al of the detailed match
categories and manual selection is also imperfect. This
difference may explain in part the dightly higher overall
eror rate estimates from SimRate than from the training
sample weight curves.

Table3
Weight Curve Methods to Estimate Linkage Error Rates at
Threshold Weight 1, MEPS 1996 — 1998

Method Error Rate 1996 1997 1998

SimRate smulation curves Fase negative 52 65 58
Fdsepositive 90 69 76

Training sample curves Fdse negative* 33 33 33

Fase positive** 55 64 57

*  Edimates from the 1996 Tra—M curve were used for al thr
years.

** Edimates from the 1996 Tra—U curve used samples of 500 records
from each match file and atotal of 250,000 unmatched pairs. The
1997 and 1998 estimates used different Tra—U curves employing
samples of 1,000 records from each match file and a totd of
1,000,000 unmatched pairs.
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7. Mixture Modd I mplementation
in MEPS

A mixture modeling approach by Belin and Rubin (1995)
views the distribution of observed match weights from a
computerized linkage system as a mixture of weights for
true matches and false matches. In principle, the mixture
model method has two attractive festures suitable for
MEPS. First, it can handle repeated applications efficiently.
When globa parameter estimates of the transformed para-
meters and the ratio of the variances of the two distributions
are available, these estimates can be applied to smilar data
for estimation. Since the MEPS record linkage is done
annualy, global estimates derived from early training
samples could conceivably be applied for linkage error esti-
mation in later years when manual review samples were not
available.

The second advantage is that the mixture model can draw
from multiple sets of parameter estimates from different
training samples and can reflect variaions. This feature is
especidly appeding for MEPS because manud review is a
complex process and not necessarily aways accurate.
Hence, an dternative is to view the computer system
selection as the truth and use them to provide an dternative
set of parameter estimates. This process can aso be repeated
using training samples from more than one year.

Our application of the Bein—-Rubin approach used the
same training samples from MEPS 1996 and a second
training sample of the same size from 1997. Following
Belin—Rubin’s examples, we applied the mixture modding
method using manually identified true and false match pairs
from a one-to-one matching system (note that such systems
provide rdatively few fase match pairs for estimation). We
computed model estimates for MEPS 1996 and MEPS 1997
assuming the manua selection to be the truth, and for
testing the behavior of the model, we computed a second set
of estimates assuming computer system selected match pairs
to bethe true pairs.

Implementation involved two procedures — the Box and
Cox (1964) procedure for globa parameter estimation and
the Cdlibrate procedure (Belin and Rubin 1995) to fit a
mixture model for error rate estimation. Before applying
Box-Cox, the weights were rescaled between 1 and 1,000.
The Box—Cox transformation discussed by Belin and Rubin
(1995) was

w -1
wt

W(w )=

where w, isthe match weight for pair r, W isthe geometric
mean of the w, weight, and y is a parameter that is
dependent on whether the pair is in the matched or
unmatched set.
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For the mixture model procedure to be effective, the
transformed weights should be approximately normally
distributed. The untransformed weight distribution with our
data showed bimodality and amost no overlap in match
weight between matched and unmatched pairs (bimodality
was also observed in Bdin-Rubin 1995). For example,
gpplication of their transformation procedure to the 1996
MEPS system pairs resulted in parameter estimates of
w=>585.7 and y=1.15 for the true matched pairs and
W=113.1 and y=0.48 for the fase matched pairs. The
transformed weights, however, showed relatively little
improvement towards normality. Since the match weights
are the log of a product, or the sum of logs, we might hope
that the weights would be normaly distributed if there were
many components in the sum. However, we had only five
fields to use for matching. The small number of fields may
have accounted in part for the lack of normality with our
transformed data.

Table 4 shows the results of applying the Belin—Rubin
mixture model to MEPS 1996. This table shows the model
edimated fase maich rates, the 95 percent confidence
interval of the estimated rate, and the actual observed false
match rate at the threshold weight of 1. Using the manual
review pairs as the true matched pairs, the model estimate of
the expected false match rate at the threshold of w=1 was
9.1 percent, with a 95 percent confidence interval ranging
between 6.0 and 12.2. The actual observed false match error
rate, however, was 14.5 percent, which is higher than the
upper 95 percent confidence bound. Note that these are rates
of theform n,, /n,, inTable 1. These are not the same rates
estimated by SimRate and the weight curve approach.

Table4
Mixture Model Linkage Error Estimates
Percentage false match error
MEPS 1996 Expected Lower Upper Observed
rate Bound* Bound* rate
Manua match 91 6.0 12.2 145
System match 0.9 0.6 12 0.0

*  Thelower and upper bounds are the 95 percent confidenceinterval
of the expected error rate.

Since manua review may not aways be accurate, an
option, for the purpose of evauation, isto treat the computer
system linked pairs as the truth matched pairs, and use them
for modeling. Under this assumption, the model estimate of
the expected error rate is 0.9, and a 95 percent confidence
interval between 0.6 and 1.2. The actud observed rate in
this case, 0 percent, was a hypothetical outcome treating the
computer-linked pairs as correct. Of course, in redity there
will be some nonzero level of eror so that the mixture
model confidence interval isnot necessarily wrong.

We generated global parameter estimates using both the
training sample manual selections and system selections for
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MEPS 1996 and MEPS 1997 and used them as four sets of
inputs to provide global estimates for modeling linkage
error for MEPS 1998. This should be possible because the
data remained similar and record pairs were selected using
the same match rules for dl 3 years. A difference was that
manual review was not conducted for MEPS 1998 and we
could not use the Box—Cox procedure for global parameter
estimation for 1998 (because there was no separate manual
indicator for true and fase pairs). For this application, we
use a bootstrap method in the Belin and Rubin Cdibrate
procedure to draw from multiple parameter sets to reflect
uncertainties in estimation. This application, however, did
not converge after 150 iterations of the estimation proce-
dure. We could only conclude that the globa parameter
edtimates from earlier training samples failed to generalize
and provide error rate edtimates for repeated linkage
applications.

8. Concluding Commentsand Analytic
Implications
The process of threshold sdection and linkage error
edimation is an iterative process involving repeated cycles
of observation, estimation, and modeling. Our case study

9

employed modeling approaches for estimating linkage
errors and for monitoring the predictive power of the
linkage system. Both methods provided vauable informa:
tion for determining the linkage selection and for evauating
the quality of the declared matched pairs as we found in
MEPS.

The weight curves approach of estimation has the apped
that one can choose a sdlection threshold to attain the
acceptable linkage error level. For example, Figure 1 shows
the training sample and the SimRate smulation weight
curves based on the 1996 MEPS matching files. A vertica
lineis drawn at the selection threshold weight of w=1; the
error levels for 1996 MEPS (shown in Table 3) were then
edtimated by the cumulative percentage at threshold level.
By diding this threshold, one can am to minimize the total
linkage error by selecting athreshold at the crossing point of
theM and U curves. In this case study, the optimal threshold
suggested by both sets of weight curves is fairly consistent.
Weincluded alikelihood ratio scale in this figure to provide
a rough likelihood interpretation of the match weight. For
example, at the match weight of w=1, the likelihood ratio
score is 2. This means that for records with a match weight
of w=1 or above, the rdative likelihood of being true pairs
isatleast 2t0 1.
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Figure 1. Weight Curvesfor MEPS 1996 using the SimRate and Training Sample Methods; the dashed vertical reference

line showsthethreshold vaue of 1.
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Samples (averticd lineisdrawn at weight = 1, which isthreshold).

For linked pair quality, Figure 2 shows the digtributions
of false match rate estimates from mixture modeling. This
figure shows the model estimated fal se match rate, the upper
and lower 95 percent confidence bounds of the error rate
estimates, and the actual observed rates. Pand 1 shows the
edtimates treating the computer system linked pairs as the
true matched pairs. Panels 2 and 3 show the estimates from
the 1996 MEPS and 1997 MEPS training samples. The
difference between Panels 2 and 3 shows the inconsistency
of manual selection by different reviewers in our
application. In dl three panels, the 95 percent confidence
interval of the model estimates failed to cover the true
observed values. Ideally, one would use both Figure 1 and
Figure 2 together to guide the choice of selection thresholds.

We have found SimRate to be an informative and
flexible tool for determining selection thresholds and
estimating error rates in our application. Given multinomia
or other models for the matching variables, the SmRate
method provides error rate estimates that would be obtained
from repesated application of the matching algorithm to a
large number of candidate record pairs. It is also flexible in
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accommodating the choices of comparison sets of pairs for
computing rates.

While our application achieved the matching and error
rate estimation goals for MEPS, more work might be done
prior to or during the analysis stage. Space does not permit
us to develop these in the context of the current case study
but two general approaches might be mentioned. Firdt, it is
possible to reweight the final results and adjust for fase
nonmetches — treating them in a manner analogous to unit
nonresponse (e.g., as in Oh and Scheuren 1980). To handle
mismatches, the ideas in Scheuren and Winkler (1993 and
1997), and Lahiri and Larsen (2002) might be worth
consulting. Whether these added steps are needed, of course,
depends on the final uses to which the linked data will be
pULt.

Acknowledgements

The basic linkage research, reported on here, was
conducted under contracts 290-99-0002 and 290-94-2002
sponsored by the Agency for Hedlthcare Research and



Survey Methodology, June 2005

Quadlity and the Nationa Center for Hedlth Statitics. The
authors would like to thank Steven B. Cohen, Steven
Machlin, and Jod Cohen of the Agency for Hedthcare
Research and Quality for their comments on various stages
of this research and Thomas Belin for his suggestions on an
earlier draft.

References

Agency for Healthcare Research and Quality (2001). MEP — Medica
Expenditure Panel Survey. <http://www.ahrg.gov/data/mepsix.
htm>.

Armstrong, J.B., and Mayda, J.E. (1993). Mode-based estimation of
record linkage error rates. Qurvey Methodology, 19, 137-147.

Bartlett, S, Krewski, D., Wang, Y. and Zidinski, JM. (1993).
Evaluation of error rates in large scale computerized record
linkage studies. Survey Methodology, 19, 3-12.

Box, G.E.P., and Cox, D.R. (1964). An andysis of transformations
(with discussons). Journal of the Royal Satistical Society, Series
B, 26, 206-252.

Belin, T.R. (1993). Evauation of sources of variation in record
linkage through a factoria experiment. Survey Methodology, 19,
13-29.

Belin, T.R., and Rubin, D.B. (1995). A method for cdibrating fase-
match rates in record linkage. Journal of the American Satistical
Association, 90, 694-707.

Chambers, JM., Cleveland, W.S,, Kleiner, B. and Tukey, P. (1983).
Graphic Methods for Data Analysis, Duxbury Press, Boston.

Felegi, I.P.,, and Sunter, A.B. (1969). A theory for record linkage.
Journal of the American Statistical Association, 64, 1183-1210.

Felegi, I.P. (1997). Record linkage and public policy — A Dynamic
Evoluation. Proceedings of the International Workshop and
Exposition, Federal Committee on Statistical Methodology, Office
of Management and Budget, Washington, DC.

Gomatam, S., Carter, R., Ariet, A. and Mitchdl, G. (2002). An
empirical companion of record linkage procedures. Satigtics in
Medicine, 21, 1485-1496.

Jaro, M.A. (1989). Advances in record linkage methodology as
applied to matching the 1985 Census of Tampa, Florida. Journal
of the American Satistical Association, 84, 414-420.

Johnson, N.L., Kotz, S. and Baakrishnan, N. (1997). Discrete
Multivariate Distributions. New Y ork: John Wiley & Sons, Inc.

11

Lahiri, P., and Larsen, M.D. (2002). Regression analyses with linked
data. (Draft manuscript).

Larsen, M.D., and Rubin, D.B. (2001). Iterative automated record
linkage using mixture models. Journal of the American Statistical
Association, 96, 32-41.

Matchware Technologies Inc. (1996). AutoMatch: Generalized
Record Linkage System User's Manual. Silver Spring, MD:
Matchware Technologies, Inc.

Newcombe, H.B. (1988). Handbook of record linkage: Methods for
health and atistical studies, administration, and business.
Oxford University Press, New York.

Newcombe, H.B., Kennedy, JM., Axford, SJ. and James, A.P.
(1959). Automatic linkage of vitd records. Science, 130, 954-959.

Newcombe, H.B., and Kennedy, JM. (1962). Record linkage:
Making maximum use of the discriminating power of identifying
information. Communications of the Association for Computing
Machinery, 5, 563-567.

Oh, H.L., and Scheuren, F.(1980). Fiddling around with nonmatches
and mismatches, Studies from Interagency Data Linkages Series.
Socia Security Administration, Report No. 11.

Scheuren, F. (1983). Design and estimation for large federa surveys
using adminigtrative records. Proceeding of the Section on Survey
Research Methods, American Stetistical Association, 377-381.

Scheuren, F., and Winkler, W.E. (1993). Regression analyses of data
files that are computer matched. Survey Methodology, 19, 35-58.

Scheuren, F., and Winkler, W.E. (1997). Regression analyses of data
files that are computer matched, |1. Survey Methodology, 23, 157-
165.

S-Plus 2000 (1999). MathSoft, Inc. Data Anaysis Products Division,
Sesttle, Washington.

Tepping, B.J. (1968). A model for optimum linkage of records.
Journal of the American Statistical Association, 63, 1321-1332.

Winglee, M., Vdliant, R., Brick, JM. and Machlin, S. (2000).
Probability matching of medical events. Journal of Economic and
Social Measurement, 26, 129-140.

Winkler, W.E. (1992). Comparative anadysis of record linkage
decison rules. Proceedings of the Section on Survey Research
Methods, American Statistical Association, 829-834.

Winkler, W.E. (1994). Advanced Methods for Record Linkage.
Bureau of the Census Statisticd Research Division, Statistica
Research Report Series, RR 94/05.

Winkler, W.E. (1995). Matching and record linkage. In Business
Survey Methods, (Eds. B.G. Cox, D.A. Binder, B.N. Chinnappa,
A. Chrigianson, M.J. College and P.S. Kott). New York: John
Wiley & Sons, Inc., 355-384.

Statistics Canada, Catalogue No. 12-001-XIE






Survey Methodology, June 2005
Vol. 31, No. 1, pp. 13-21
Statistics Canada, Catalogue No. 12-001-XIE

13

The Effect of Record Linkage Errorson Risk Estimatesin Cohort
Mortality Studies

D. Krewski, A. Dewanji, Y. Wang, S. Bartlett, J.M. Zielinski and R. Mallick *

Abstract

The advent of computerized record linkage methodology has facilitated the conduct of cohort mortality studies in which
exposure data in one database are el ectronically linked with mortality data from another database. This, however, introduces
linkage errors due to mismatching an individual from one database with a different individual from the other database. In
this article, the impact of linkage errors on estimates of epidemiological indicators of risk such as standardized mortdity
ratios and relative risk regression model parameters is explored. It is shown that the observed and expected number of
deaths are affected in opposite direction and, as a result, these indicators can be subject to bias and additiond variability in

the presence of linkage errors.

Key Words: Cohort study; Computerized record linkage; Linkage errors, Linkage threshold weight; Poisson
regression; Relative risk regression; Standardized mortality ratio.

1. Introduction

In recent years, a number of historical cohort studies
have been carried out in environmenta epidemiology using
exiging administrative databases as information sources
(Howe and Spasoff 1986; Carpenter and Fair 1990). In
general terms, this involves linking records of human
exposure to environmental hazards with records on hedlth
satus, often using computerized methods for matching
individual records from different databases. In a cohort
mortality study, the vita status of each cohort member is
determined by linkage with mortality records maintained by
government agencies. Excess mortdlity within the cohort
relative to the general population may be due to exposures
experienced by the cohort members.

In specific terms, record linkage is the process of
bringing together two or more separately recorded pieces of
information pertaining to the same entity (Bartlett, Krewski,
Wang and Zielinski 1993). Procedures for computerized
record linkage (CRL) have become highly refined, using
sophigticated agorithms to evaluate the likdihood of a
correct match between two records (Hill 1988; Newcombe
1988). Statistics Canada has developed a CRL system called
CANLINK which is capable of handling both single file
linkages and linkages between two separate files (Howe and
Lindsay 1981; Smith and Silins 1981). In this system,
weights reflecting the likelihood of a match are attached to
pairs of records. Two thresholds are set: potential matches

with linkage weights above the upper threshold are
considered to be links whereas potential matches with
weights below the lower threshold are considered to be
nonlinks. Potential matches with weights between the upper
and lower thresholds are resolved using additional in-
formation when available. Otherwise, a single threshold is
selected to discriminate between links and nonlinks.

The confidentiality of records protected under the
Statigtics Act is strictly maintained in any study in which
record linkage is employed. All studies requiring linkage
with protected data bases must satisfy a rigorous review and
gpproval process prior to implementation, following well-
established procedures for data confidentidity (Singh,
Feder, Dunteman and Yu 2001). All linked files with
identifying information remain in the custody of Statistics
Canada (Labossiére 1986).

Computerized record linkage methods have been used to
link environmental exposure data to the Canadian Mortality
Data Base (CMDB). For example, astudy of Canadian farm
operators was initiated to investigate possible relationships
between causes of death in over 326,000 farm operators in
Canada and various socio-demographic and farming
varidbles, particularly pegticide use (Jordan-Simpson, Fair
and Poliquin 1990). In this study, the CMDB was linked
with the 1971 Census of Population and the 1971 Census of
Agriculture. Another ongoing large-scale study is based on
the Nationa Dose Registry (NDR) of Canada (Ashmore and
Grogan 1985, Ashmore and Davies 1989). The NDR
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contains information on occupational exposures to ionizing
radiation experienced by over 400,000 Canadians dating
back to 1950. The NDR has recently been linked to the
CMDB to investigate associations between excess mortality
due to cancer and occupationa exposure to low levels of
ionizing radiation (Ashmore, Krewski and Zielinski 1997,
Ashmore, Krewski, Zidinski, Jang, Semenciw and
L étourneau 1998). More recently, the NDR has been linked
to the Canadian Cancer Incidence Database (Sont, Zielinski,
Ashmore, Jiang, Krewski, Fair, Band and L étourneau 2001).
A comprehensive list of other hedth studies based on
linking exposure data with the CMDB has been compiled
by Fair (1989).

The success of record linkage studies depends on the
quaity of databases being linked (Roos, Socodeen and
Jebamani  2001). Using population based longitudinal
administrative data, Roos et al. examined data quality issues
in studies of health and health care. Ardal and Ennis (2001)
considered systematic errors in administrative databases
involved in secondary anadysis of health information.
Although record linkage studies will benefit from the use
high quality data, limitations in data quality may be offset to
a certain extent by the large sample sizes found in many
administrative data bases.

Record linkage studies have severd advantages over
traditiona epidemiologicd sudies. By using existing
administrative databases, the need to collect new data for
health studies is circumvented, and large sample sizes can
often be achieved with relatively little effort. Depending on
the nature of the databases utilized, record linkage provides
an inexpensive way of exploring many possible associations
in epidemiological studies. Record linkage also has certain
disadvantages. There is generdly little control over the
information collected, and there can be appreciable loss to
follow-up. Ancther disadvantage of record linkage is the
occurrence of linkage errors, which is the focus of this
paper. Inevitably, some records that match will fail to be
linked, and other nonmatching records will be incorrectly
linked.

Relatively little work has been done to determine the
impact of these linkage errors on datistical inferences.
Neter, Maynes and Ramanathan (1965) used a simple linear
regression model to analyze the impact of errors introduced
during the matching process. Their results indicate that
linkage errors inflate the residual variance and introduce
bias into the estimated dope parameter. Winkler and
Scheuren (1991) derived an expression for the bias in
estimates of linear regression coefficients due to linkage
errors. Advances in the estimation of linkage error rates by
Belin and Rubin (1991) enabled Scheuren and Winkler
(1993) to implement an improved bias adjustment
procedure. Linear regresson methods for the analysis of
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computer matched data files are further discussed by
Scheuren and Winkler (1997).

The purpose of this paper is to explore the impact of
linkage errors on datigtical inferences in cohort mortality
sudies. Relative risk regresson models employed in the
andysis of data from such studies are described in section 2,
and expressions for the observed and expected numbers of
deaths based on these models developed. The impact of
linkage errors on the observed and expected number of
deaths and person-years at risk is discussed in section 3. An
andysis of the impact of linkege errors on estimates of
dandardized mortdity ratios (SMRs) and relative risk
regression parameters is given in section 4. Both types of
errors can cause bias and additional variability in estimates
of these parameters. Our conclusions are presented in
section 5.

2. RdativeRisk Regresson Modds

Statistical methods for the analysis of cohort mortality
studies are well established (Bredow and Day 1987). The
primary objective of such analysis is to determine if the
exposure to the agent of interest increases the mortality rate
among cohort members. Mortality is characterized by the
hazard function, which specifies the death rate as a function
of time Letting T denote the time of death, the hazard
function at time u isformally defined as

Pr{us<T <u+Au|T 2u}
Au '

AU = lim &
Let A, (u) denote the hazard function for a specific cause of
death at time u for individual i =1, ..., N in a cohort of
Sze N, and let z,(u) represent a corresponding vector of
covariates specific to that individual. We assume that the
effect of these covariates is to modify the basdine hazard
A" (u) inaccordance with the relative risk regression model

A (W) =X (W)H B z ()}, @

where y isapostive function of the covariatesand 3 isa
vector of regression parameters.

Two specid cases of the generd relative risk regression
model of particular interest are the multiplicative and
additive risk regression models. Define the function vy in (2)

by

@+2r -1

logy(2) = (©)

When p=1, the genera reldive risk regresson model
reduces to be the multiplicative risk regression model

A (U) =% (u)exp{’ z; (W)}, 4)
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This proportional hazards model was introduced by Cox
(1972), and is widely used in the analysis of mortality data
(Kabfleish and Prentice 1980). The additive risk regression
model

A (u) =2 (u)+B"z; (u) ©)
occursasalimiting caseas p — 0.

Let t° and t! be the age at the time of entry into the
study, and the age &t the time of loss to follow-up (due to
withdrawal from the study, termination of the study, or
death) for the it subject of the cohort, respectively. Let
6, =1 or O, according to whether the it individual has or
has not died at the time of loss to follow-up. The log-
likelihood function based on the relative risk model (2) may
be written as

8; log(¥{B'z; (t/)})

IogL:ZN: o . (6)
S [ ARz (A (u)du

When there is a single covariate z (u) =1, the maximum
likelihood estimate of 6 =exp{p} reduces to the standard-
ized mortality ratio SMR = OBSEXP, where OBS=
N8 andEXP= YN, e aethe observed and expected
numbersof desths, respectively, with e, _j A (u) du.

Maximization of the likelihood functlon (6) can be
computationally burdensome with large sample szes.
Bredow, Lubin and Langholz (1983) simplify the likelihood
by assuming that the covariates take on constant values
within states through which a subject passes during the
course of the study. The dates are defined by cross-
classfication of the covariates of interest. Specificdly,
suppose that there are J such states {S;; j =1, ..., J} such
that z; (u) = z; whenever the it" subjectisin S; at time u.
These states are mutualy exclusive and exhaustive, so that
a any given time u, each member of the cohort will fall
into one and only one state. The log-likelihood function (6)
may then be written as

IOgLZZJ:{diJIog('Y{B,Zi})_’Y{B,ZJ}eJ}’ Y
j=1
where

=i sy ¥ (e ®)

is the contribution to the expected number of deathsfrom al
person-years of observetion in the state S;, and d
denotes the total number of desths in that dtate. Letting
A;(B)=log(v{Bz;}), the maximum likelihood estimate
B of B isobtained asthe solution to the score equation

0 J A .
'WL Z (m {d, —exp{A (B)}e;}=0.(9)
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3. TheEffect of Linkage Errorson the Observed
and Expected Numbersof Deaths

Two principal types of errors can occur when linking
datafilesin CRL (Fellegi and Sunter 1969). A false positive
occurs when a member of the cohort who is dive is
incorrectly identified as dead, and a false negative occurs
when a deceased member is considered to be alive. More
specificaly, for the mathematical development to follow, a
false positive occurs in a particular state when an individua
who remains aive throughout this state is incorrectly
labelled as dead in this state. Similarly, a fase negative
occursin a particular state when a member, who died before
or during the sojourn in this dtate, is considered to be dive
throughout this state. Within a particular state, false
positives and false negatives thus represent specia cases of
misclassification error discussed by Anderson (1974,
chapter 6.2.1). In this section, we will discuss the effect of
these two types of linkage errors on the observed and
expected numbers of degaths, respectively. To do this, we
first define sets of indices within states which will be used to
represent sets of correctly matched and incorrectly matched
records.

3.1 LinkageErrors

Let A, and D, denote the set of |abels for those individ-
uas in the cohort who remain alive throughout state Sj,
and those who are dead in S;, respectively. Write D;; as
the subset of D; corresponding to those individuals who
have died in S;. Let AL, D} and D} denote the corre-
sponding sets in the presence of linkage errors. We further
define DP asthe st of labels of those divein S; (that is,
in A;) butlabeled asdead in S; corresponding to the false
postivesin S;. Similarly, A" is the set of those dead in
S; (thatis in D;) butlabeled asdivein S; corresponding
to the fase negatlves in S;. Let usaso erte Df asthe
subset of DP correspondlng to those who are Iabeled to
have died in S; and, smilary, AY as the subset of AY
who havediedin S; (thatis, in D). These setssdtisfy the
relations A-=(A -DP)u AN, D= (D, - A¥)uDP,
and D} _(D —AN)uD

The effect of Imkage errors on the likelihood function in
(7) may be described as follows. Let t? denote the time at
which the it individua enters, actually or by linkage error,
the ji gtate S;. Similarly, t} denotes the time of desth (if
it occurs, actualy or by linkage error) for the it individua
in S; and t? thetimeof leaving S;, actually or by linkage
error. Note that, if t} exists, it is less than or equal to t?.
Let us, for the sake of smplicity, assumethat t}, if exists, |s
equal to t?; that is, al the deeths in a state occur at the
corresponding entry times in that state. Although this will
underestimate the expected number of deaths, for the
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purpose of studying bias, it may not be that objectionable.
Assuming dl the deaths to occur at the times of leaving the
corresponding states adso offers smilar simplification.
Using (8) and the decomposition of AL, the expected
number of deaths el in S; the presence of linkage errors
can bewritten as

=Y [ 2% (Wadu

S [in @i+ I8 @

ieAj ieAiN i
t2
- .[tp A (u)du
ieDjp I
=g, —Ae;, (10)
where
e=Y j:; X (u)du, and Ae, =€P —e" (1)
ieAi !
with
el =Y [ X (wduande=3 [N (u)du. (12)
ieDIP i ieAiN I

For notational convenience, let us write T, (i, j) for
| t‘;f A" (u)du in what follows. The term Ae, represents
the bias in the expected number of deaths in the jt state
due to linkage errors. It follows from (10) and (11) that the
false positives tend to reduce the expected number of deaths
and the fal se negatives tend to increase the expected number
of deaths.

Using the decomposition for D}, the observed number
of desths d}; in the presence of linkage errors may be
written as

dj=d; +Ady, 13
where

Ad; =df -af, (14
with d;;, d? and af} denoting the number of individualsin
the sets D;, Df and Al', respectively. The teem Ad

represents the difference between the observed number of
degthsin the jt dtate dueto linkage errors. It follows from
(13) and (14) that the false positives will increase the
observed number of deaths and the false negatives will
reduce the observed number of deaths.

Vital datus is often determined by linkage with the
CMDB, which is generally much larger than the cohort of
interest. When the exposure records of alive individua are
incorrectly associated with those of a dead person, the
deceased individual usualy does not belong to the cohort.
Thus, the person-years at risk contributed by the person
remaining aive will end prematurely in the year of
presumed dezath; the lost person-years at risk correspond to
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the time period from the year of presumed death until the
end of the follow-up. On the other hand, when the exposure
records of a dead individual are incorrectly associated with
those of a live person, the person-years at risk contributed
by this individual will include an extra period from the
actual desth-year to the end of the follow-up. Thus, false
positives will deflate the number of person-years at risk and
false negatives will inflate the number of person-years at
risk in the cohort.

3.2 Expectationsand Variances of Differences
Between the Observed and Expected Numbers
of Deaths

The €effect of linkage errors on the observed and expected
numbers of deaths depends on the false positive and fase
negative rates. Let pP and pN denote the false positive
and false negative rates, respectively, in S;, for j=1 ..,
J, which are assumed to be congtant within S; and same
for dl theindividualsin A; and D, respectively. Thisas-
sumption is reasonable whenever individuals in the same
gtate are highly homogeneous, particularly with respect to
attributes such as the quality of persona identifiers that
influence linkage error rates. Although this idedized as-
sumption is unlikely to be fully satisfied in practice, it
affords considerable simplification in the subsequent evalu-
ation of the effects of linkage errors. Formally, pf (pl) is
the conditional probability that an individual in A, (D) is
labeled deed (dive) in S;. Thatis, pP =P[ie DP [ie A]
and pN =P[ie AN|ie D,].

Let us write a;, d;, a and dP as the number of
individuals in A, D;, AjN and DF, respectively. Then,
notethat, dP followsa Binomial (a;, pf) distribution and
a\ follows a Binomial (d;, p}') digtribution. Also, df
followsa Binomial (a;, pf) distribution, where pf isthe
conditional probability that anindividual in A, islabeled to
havediedin S;. Thatis, pf =P[ie D} |ie A]. Clealy,
p; < pP. Smilarly, af follows a Binomial (d;;, p})
distribution, where p} isthe conditional probability that an
individud in D; is labeled as dive in Sj. That is, pjj =
Plie Al' |ie D;]. Although thereisno trivia relationship
between pY and p}f ingenerd, it is reasonable to assume
p) = p}i inthiscontext of linkage errors.

Assuming that linkage errors related to different
individuas are independent, the expectation and variance of
the difference in the observed number of deaths in Sj,
givenby Adj; in(14), are

E[Ad;]=E[dF]-E[a)]=a; p? —d; p}  (15)
and
V[Ad,;]=V[dP]+V[a)
=a; pf @-pf)+d; p) L-p}). (16
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Since A and D; consst of different sets of individuas,
df and aff areindependent.

Similarly, the expectation and variance of the difference
in the expected number of deathsin S;, given by Ae; in
(12), can be cdculated as follows. For this purpose, it is
convenient to write eP and e} in terms of the following
indicator variables. For ie A;, define §; =1{ie DP} and
& =1{ie Df}. Also, for ie D;, define y; =I{ie AN}.
Then, from (12) and the definitions of DP and AN, we
have

eJPZZE;ij .0, 1) 17)

ie Aj
and

ey = ZWij T, ). (18)

ieD;
i i P _ N —
In particular, one can write djj =% §; and aff =

Yiep, ¥ » which are useful to derive (15) and (16). From
(17) and (18), we have

E[Ae]=E[el]-E[e]']
=pP Y TG D) - p) X TG D), (19
md 1 ]
V[Ae]=V[eP]+V[e})']
=pP(1-pP) X TAG, )

ieA

+pN (- pM) T2, i), (20)

ie D;

snce A; and D; consist of different setsof individuals.
The results (15)—(16) and (19)—(20) indicate that
record linkage errors will lead to bias and additiona
variaion in the observed and expected number of deaths.
Minimizing the variance terms in (16) and (20) is difficult
since the two error rates pP and p) are not functionaly
independent. Generaly, decreasing pP will result in an
increase in p) and vice versa (see section 5 for further
discussion of this point). Although these error rates are
independent of the underlying relative risk regression mode
v in (2), the mean square error obtained by combining the
expectation and variance terms cannot be minimized
without specification of the baseline hazard A* (u), which

appearsin T, .

4. TheEffect of Linkage Errorson Estimates of
SMRsand Regression Coefficients

4.1 Standardized Mortality Ratios

To determine the effect of linkage errors on the SMR, we
replace the actual observed and expected numbers of deaths
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d; and e; by the observed and expected number of deaths
di and e in the presence of linkage errors in the
expresson SMR = Zd”/Zej. Letting SMR, denote the
standardized mortdity ratios in the presence of linkage
errors, we have

SMRL=SMR{1+ %Adj”}/{l— %A:] (21)

It follows, from (10)—(14), that the false postives will
increase the SMR, wheress the false negatives will decrease
the SMR.

By using a first order Taylor series gpproximation of
SMR, about SMR, the difference ASMR=SMR, —
SMR can be expressed as

ASMR _ 2 Ad; . > Ae

SMR > d; 28
Then, the mean and variance of the relative difference in the
SMR can be approximated by

E{ASMR} - Y., Elady] +Z; E[Ae]

SMR 2. 9 28

(22)

(23)

and

V{ASSMMRR} Z(Zj:duj_zv {;Ad”}

(ze) V[zee ]

-1 -1
+2£Zd”} (Zejj Cov{ZAd”,ZAej](M)

i i i i
respectively. The right hand sde of (23) can be easly

caculated by usng (15) and (19). In order to calculate the
right hand side of (24), note that

V{ZAd” }zZV[Ad”]
] ]

+2 Cov[Ad

j<i’

Ad. ], (25

i i
V{ZAej }:ZV[Aej 1+2) Cov[Ae;, Ae; ], (26)
j J i<i’

and
Cov[ZAdjj , D Ae, }
i i

=ZCOV[Ad Ae; ]+ leov[Ad” , Aey 1. (27)
]

j#]

i
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Withoutlossof generdlity, let usassume, for j< j’, that
<t} for the sameindividual i (alive or deed) in S; and
thatlstheentrytlmem S isthe same or eerllerthan
thamin S, . Wethen have, for j <y,

Cov[Ad,Ad,; ]

ne

=—( 2 PPt 2Py pj”'} 29

ieAijj» ieAir\Di/j»

IJ_

Cov[Ae;, Ae; ]
= Y plA-p)T (G, DTG )

ieAimAj:
+ > Py PTG DTG )

ieAiijf
+ > prA-p)T. (L DT ), (29)
ieDiij:

Cov[Ad“., Ae].]

= pP(1-pP)T, G, j)
ieAj

+ 2, PrA-pM) TG D), (30)

ieDj;
Cov[Ad;, Aey]
= 2 pyA-p)T.G )

ie AjnA)

+ > p; PP TG00

ieAjnD-

+ 2 py@-pP)T (i, i), and (31

ieDynD;

Cov[Ad ;- , Ag|]

> Py T, 0)
ieAir\Ajr

+ > PPy T D) (3

ie AjnD;y

i

Using (25) —(32), the variance of the relative difference
ASMR/SMR can be approximated by the right hand side
of (24). Two conclusions can be drawn from (23) and (24).
Fird, linkage errors can lead to bias in the estimate of the
SMR. Second, both types of linkage errors introduce
additiona variation into estimates of the SMR. Note that the
first term in (32) is dominated by the first term in (29) for

pf/ < 05, and the negative covariance term (28) is
dominated in the calculation of the variance in (25).
Therefore, the additional variance (24) is strictly positive,
since hoth the false positive and fdse negative rates are

positive.
4.2 Relative Risk Regression Parameters

To determine the effect of linkage errors on regression
parameter estimates, consider first the genera relative risk
regression model (2). Replacing the observed and expected
numbers of deaths d;; and e; in the log-likelihood function
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(7) with the observed and expected numbers of deathsin the
presence of linkage errors d; and ek, we have

logL= Y {dy log(r{F z) - B z}el}. (33
j=1

Let f and B denote the maximum likelihood estimates of

B based on {d;, ¢} and {d}, et}, respectively. The
score equation (9) can be written as
BA (B)
25
[oljj +Ad; —exp{A;(B)}(e; — Ae)]=0. (34)

Assuming that AB = B—Aﬁ is small, a first order expansion
of exp{A;(B)} aound B gives

exp{A; (B)} = eXIO{A}+eXp{A} B AB, (39

where Aj =Aj(B) and aAj /0B is 0A /0B evaluated a
B =p. Substituting (35) into (34) leadsto

J aA ~
Z ][d _exp{Aj}ej]

=] ) _
Ad; +H Bz} Ae
; & _ 8;\] = 36
+sz183 Bz} e 35 —LAB [=0. (36)
B’z Ae, IA; —IA
+¥{B'z;} 35 p

Using (9), the flrsI summation in (36) is zero. Consequently
snce Ag;AB issmall, AR may be approximated by

aA, ]
AB:[Z—Y{B Je, AJ

T Jp ' oB
oA
Y —{ad;+fzae}  (37)
T op
It follows from (37) that
oA oA A,
E[AB]:EZ WY{B e aBJ Z 3[5 , (38)
J

where o, =E[Ad;]+v{B'z;} E[Ae;]], which can be

caculated from (15) and (19). Further,
viagi=[s 22 oA\

[ B]—[ZWY{BZ be, 8BJ

dA; oA
=35

A A\
[Z 2B R CERT aﬁj (39)

with
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@H: Cov[Adjj +v{B zj}Aej , Adj,j,+y{[3 zj,}Aej,],

which can aso be easily obtained usng (16), (20) and
(28)-(32).

In the specia case of the multiplicative risk model (4),
the difference AP due to linkage errors may be
approximated by

AB=(X'W X)X (AD +AW), (40)

where X'=A(21, w Z), A[?’z(Adll, oy Adyy), W=
diag(exp(z; B) e, ... exp(z;B)ey), and  AW'=
(exp(z; B) Ae,, ..., exp(z; B)Ae,). Note that the weight
matrix W isthe Fisher information matrix for ﬁ It follows
from (38) that

E[AB]
where 11" =(n, ..., ®,;) with n; being same as o, but

Y{B'z;} replaced by exp(Z, B)
Further

=(X'WX)'X'1, (41)

VIAB] = (X'W X)X ¥ X(X'WX)™, (42)

where ¥ is the matrix of ©.’s with y{B z;} replaced
by exp(z B) Note that (40) (42) are spemal cases of
(37)- (39) respectively, written in matrix notation.

With a single covariate z =1, XWX =6l 3 e,
X’AD=3;d; and XAW =€b 3; Ae;. Inthiscase,

AB= ZJ.Adej JreBZjAej | @
eﬁz‘ej
Since the SMR=eb= Yd;/x;e, with AB=
ASMR/SMR inthiscase, we have
CAd, Ag
INERIELIPILLS (44)
Zj di Z e

Thus, (44) may be viewed asa specia case of (22).

The preceding results indicate that both false postives
and false negatives will introduce bias and additiona
varidion into the estimates of relaive risk regression
parameters. The only negative contribution to this additional
variance (39) is through Cov[Ad;, Ad,; ], given by
(28), and the first term in (32) (see © ;). Using the same
argument as in section 4.1, it follows that this additional
varianceis drictly positive,

5. Conclusons

Record linkage is now a well-established technique in
epidemologica studies of population hedth risks. By
linking information on individual exposures from one
database to information on health outcomes in another
database, it is possible to construct large-scale informative
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databases on risks to hedth of populations and population
subgroups. The success of such studies will depend to a
large extent on the quality of the two databases being linked,
including the amount of information on individud
identifiers used to link individuas in the two databases. In
most studies, the accuracy of the linkage is examined by
estimating the false link (false positive) and false nonlink
(false negative) rates associated with the linkage process. In
practice, thisis usudly done by drawing a sample of linked
and nonlinked records, and determining the accuracy of the
linkages in the sample using auxiliary information drawn
from other sources.

Although CRL has been used for some time in cohort
mortality studies, the impact of linkage errors on the
reliability of datistica inferences drawn from such studies
has not been subjected to detailed investigation. The
theoretical results presented in this paper address this
issue.These results show that in addition to inflating the
observed number of deaths, false positives will tend to
deflate the expected number of deaths. Conversdly, fase
negatives inflate the expected numbers of deaths and deflate
the observed number of deaths. Linkage errors were shown
to introduce bias into estimates of SMRs. Relative risk
regression coefficients are also subject to bias, the direction
of which depends on the nature of the regression coefficient.
In addition to these biases, linkage errors introduce
additiona uncertainty into estimates of both SMRs and
regression coefficients.

Although we make the simplifying assumption of
ti —t,‘]’, one can derive the relevant expressions for biasand
mcreesed variability without this assumption; however, the
expressions are too complex to offer additional insight into
the effects of linkage errors. This is aso true of the
assumption that pf = p}. There is a technica issue with
the definition of A, for the state(s) corresponding to the last
age interva, which is usudly open up to « on the right
hand side. In such state(s), the assumption that t1 =t? will
be problematic if the probability of dying in thislast interva
is appreciable. This problem may be circumvented by
assuming the human life span to have afinite upper limit.

As discussed at the end of section 3.1, false postives
occur primarily when an individual who is dive at the end
of the follow-up period is incorrectly linked with a dead
person. However, a person who died in one of the states S,
may be falsdly linked with another person with an earlier
death time. This leads to a false positive which persists until
the actual time of death; the andlysis in section 3 alows for
this type of error. Similarly, a dead person may be fasely
linked with another person dying at a later time, who is not
dive at the end of follow-up. This case is treated as a fase
negative only up to the false death time. At this false time of
death, this will contribute incorrectly to the number of
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deaths, an error which has not been considered in section 3.
However, this type of error would not normally be detected
in typical record linkage studies in which a smplified
manua check is used to identify false positives and false
negatives. Since this type of error is likdy to be rare, the
effect is expected to be smdll.

In order to further explore the potentia impact of linkage
errors, let T; be the upper age limit for the j date S;.
(Note that some of the t; *smay be equal.) Then, letting o
denote the probability of alinkage error (of either type), the
false podtive and negetive rates, pP and p}, may be
written as oP[T <t;] and oP[T >1;], respectively. In
paticular, pf=oP[t;,<T<1;], where 1, ; is the
lower age limit for the j* date, and pj = p}'. Therefore,
the false positive rates may be greeter than the false negative
rates in the older age groups, with the reverse happening in
the younger age groups. Assuming a similar pattern in the
szeof the D;’sand A;’s, some cancellation of terms may
teke place in the caculation of E[Ag] in (19) and
E[Ad;] in (15). This cancellation effect will reduce the
expected bias in the SMR and the relative risk regression
parameters given in (23) and (38), respectively.

Although we have considered only all-cause mortdity in
this article, cause-specific mortality can be examined by
smple modifications of the definitions of D, D} and
Df. These sets should then consider only those desths
from the specific cause of interest. Consequently, d; and
e; should denote, respectively, the observed and expected
number of deaths of the specific type in S;. The hazard
function in (1) and (2) should relate to the specific type of
death, with X" (u) being the corresponding baseline cause-
specific hazard rate. Finally, the indicator 6, in section 2
should indicate the specific type of death.

While the preceding andyticd results shed considerable
light on the effects of linkage errors in cohort mortality
dudies, it is important to investigate such effects under
conditions as close as possible as may be encountered in
practice. To this end, we conducted a computer simulation
study based on actual data from the National Dose Registry
of Canada, in which the introduction of false links and false
nonlinks with known probabilities have been used to further
evaluate the impact of linkage errors on estimates of cancer
risk (Mallick, Krewski, Dewanji and Zidlinski 2002). These
simulation results corroborate the theoretical findings of this
paper.

While the results reported here may help to clarify the
impact of linkage errors on datistical inference, methods
that take such errors into account in the statistical analyses
remain to be developed. Such methods may be based on
response error models employed in survey sampling, used in
conjunction with traditional statistical methods for analyses
of cohort mortality data. Research in thisareais underway.

Statistics Canada, Catalogue No. 12-001-XIE

6. Acknowledgements

This research was supported in part by a grant from the
National Science and Engineering Research Council of
Canada to D. Krewski, who currently holds the
NSERC/SSHRC/McLaughlin Chair in Population Health
Risk Assessment at the University of Ottawa. Preliminary
versions of this paper were presented at the Annual Joint
Meeting of the American Statisticadl Association in San
Francisco, August 8-12, 1993, and the Annua Meeting of
the Statistical Society of Canada, Montreal, July 10-16,
1995. Thefinal draft was presented in the session in honour
of JN.K. Rao at the Statistics Canada Symposium 2001
held in Ottawa on October 18, 2001. The first author
(D. Krewski) is particularly grateful to have been invited to
speak in the session in honour of JN.K. Rao, who served as
his doctoral thess supervisor many years ago. This work
was completed while A. Dewanji was a Visiting Scholar at
the McLaughlin Centre for Population Hedth Risk
Assessment in the summer of 2002 and 2003.

References

Anderson, T.W. (1974). An Introduction to Multivariate Satigtical
Analysis. New Y ork: John Wiley & Sons, Inc.

Ardd, S, and Ennis, S. (2001). Data detectives. Uncovering
systematic errors in administrative databases. Proceedings:
Symposium 2001, Achieving Data Quality in a Satistical Agency:
A Methodological Perspective, Statistics Canada, Ottawa.

Ashmore, J-P., and Grogan, D. (1985). The nationa dose registry of
Canada. Radiation Protection Dosimetry, 11, 95-100.

Ashmore, J-P., and Davies, B.D. (1989). The nationa dose registry:
A centralized record keeping system for radiation workers in
Canada. In Applications of Computer Technology to Radiation
Protection, IAEA-SR-136/58, J. Stephan Ingtitute, Ljublyua, 505
520.

Ashmore, J.-P., Krewski, D. and Zidinski, JM. (1997). Protocol for a
cohort mortdity study of occupational radiation exposure based on
the nationd dose registry of Canada. European Journal of Cancer,
33, S10-321.

Ashmore, J-P., Krewski, D., Zidlinski, JM., Jang, H., Semenciw, R.
and Létourneau, E. (1998). First analysis of occupational radiation
mortality based on the national dose registry of Canada. American
Journal of Epidemiology, 148, 564-574.

Bartlett, S, Krewski, D., Wang, Y. and Zidinski, JM. (1993).
Evaluation of error rates in large scae computerized record
linkage studies. Survey Methodology, 19, 3-12.

Belin, T.R, and Rubin, D.B. (1991). Recent developments in
calibrating error rates for computer matching. Proceedings of the
1991 Annual Research Conference, U.S. Bureau of the Census,
657-668.

Bredow, N.E., Lubin, JH. and Langholz, B. (1983). Multiplicative
models and cohort andysis. Journal of the American Satistical
Association, 78, 1-12.



Survey Methodology, June 2005

Bredow, N.E., and Day, N.E. (1987). Satistical Methods in Cancer
Research, Vol. 2: The Design and Analysis of Cohort Sudies.
IARC scientific publication No. 82, international agency for
research on cancer, Lyon, France.

Carpenter, M., and Fair, M.E. (Eds.) (1990). Canadian Epidemiology
Research Conference — 1989: Proceedings of Record Linkage
Sessions & Workshop. Ottawa Sdlect Printing, Ottawa.

Cox, D.R. (1972). Regresson models and life tables (with
discussion). Journal of Royal Satigtical Society, B, 34, 187-220.

Fair, M.E. (1989). Studies and References Relating to Uses of the
Canadian Mortality Data Base. Report from the occupational and
environmental hedth research unit, Hedth Divison, Statistics
Canada, Ottawa

Felegi, I., and Sunter, A. (1969). A theory for record linkage. Journal
of the American Satistical Association, 64, 1183-1210.

Hill, T. (1988). Generdlized Iterative Record Linkage System: GIRLS
Strategy (Release 2.7). Report from research and general system,
informatics services and development division, Statistics Canada,
Ottawa.

Howe, G.R.,, and Lindsay, J. (1981). A generalized iterative record
linkage computer system for use in medical follow-up studies.
Computers and Biomedical Research, 14, 327-340.

Howe, G.R., and Spasoff, RA. (Eds) (1986). Proceeding of the
Workshop on Computerized Linkage in Health Research.
University of Toronto Press, Toronto.

Jordan-Simpson, D.A., Fair, M.E. and Poliquin, C. (1990). Canadian
farm operator study: Methodology. Health Reports, 2, 141-155.

Kalbfleish, J.D., and Prentice, R.L. (1980). The Statistical Analysis of
Failure Time Data. New Y ork: John Wiley & Sons, Inc.

Labossiere, G. (1986). Confidentidity and access to data The
practice at Statistics Canada. Proceedings of the Workshop on
Computerized Record Linkage in Health Research, University of
Toronto Press, Toronto.

Malick, R., Krewski, D., Dewanji, A. and Zidinski, JM. (2002). A
simulation study of the effect of record linkage errors in cohort
mortality data. Proceedings of International Conference in Recent
Advances in Qurvey Sanpling. Carleton University, Ottawa, to
appedr.

21

Neter, J, Maynes, E.S. and Ramanathan, R. (1965). The effect of
mismatching on the measurement of response errors. Journal of
the American Statistical Association, 60, 1005-1027.

Newcombe, H.B. (1988). Handbook of Record Linkage: Methods for
Health and Satistical Sudies, Administration, and Business.
Oxford Medical Publications. Oxford.

Roos, L.L., Soodeen, R. and Jebamani, L. (2001). An information-
rich environment: Linked-record systems and data quality in
Canada. Proceedings: Symposium 2001, Achieving Data Quality
in a Satistical Agency: A Methodological Perspective, Statistics
Canada, Ottawa

Scheuren, F., and Winkler, W.E. (1993). Regression andysis of data
files that are computer matched. Survey Methodology, 19, 39-58.

Scheuren, F., and Winkler, W.E. (1997). Regression andysis of data
files that are computer matched—Part 1. Survey Methodology, 23,
157-165.

Singh, A.C., Feder, M., Dunteman, G. and Yu, F. (2001). Protecting
confidentiaity while preserving quality of public use micro data.
Proceedings: Symposium 2001, Achieving Data Quality in a
Satigtical Agency: A Methodological Perspective. Statistics
Canada, Ottawa

Smith, M.E., and Silins, J. (1981). Generdized iteraive record
linkage system. Social Satistics Section, Proceedings of the
American Satistical Association, 128-137.

Sont, W.N., Zidinski, JM., Ashmore, JP., Jang, H., Krewski, D.,
Fair, M.E., Band, P. and Lé&ourneau, E. (2001). First anaysis of
cancer incidence and occupationa radiation exposure based on the
national dose registry of Canada American Journal of
Epidemiology, 153, 309-318.

Winkler, W.E., and Scheuren, F. (1991). How computer matching
eror effect regresson analysis. Exploratory and confirmatory
anadysis. Technicd report, Statistica research divison, U.S.
Bureau of the Census, Washington, D.C.

Statistics Canada, Catalogue No. 12-001-XIE






Survey Methodology, June 2005
Vol. 31, No. 1, pp. 23-40
Statistics Canada, Catalogue No. 12-001-XIE

23

Analysis of Experiments Embedded in Complex Sampling Designs

Jan A. van den Brakel and Robbert H. Renssen !

Abstract

At national gtatistical ingtitutes, experiments embedded in ongoing sample surveys are conducted occasiondly to investigate
possible effects of alternative survey methodologies on estimates of finite population parameters. To test hypotheses about
differences between sample estimates due to aternative survey implementations, a design-based theory is developed for the
anaysis of completely randomized designs or randomized block designs embedded in general complex sampling designs.
For both experimental designs, design-based Wald statistics are derived for the Horvitz-Thompson estimator and the
generalized regression estimator. The theory isillustrated with asimulation study.

Key Words: Design-based anadysis; Measurement error models;, Probability sampling; Randomized experiments;

Superimposition.

1. Introduction

A part of survey methodology is to consider and test
dternative survey methods, to improve the qudity and
efficiency of sample survey processes at nationa Statistical
indtitutes. Large-scale field experiments embedded in
ongoing surveys are particularly appropriate to quantify the
effect of alternative survey implementations on response
behavior or estimates of finite population parameters. At
Statistics Netherlands, for example, the effects of aternative
gquestionnaire designs, different approach dtrategies or
different advance letters have been investigated on both
kinds of parameters, see Van den Brakd and Renssen
(1998), Van den Brakd (2001), and Van den Brakd and
Van Berkd (2002). At nationd statistical ingtitutes, sample
surveys are generally kept unchanged as long as possible in
order to construct uninterrupted time series of estimates of
population parameters. It is inevitable, however, that survey
proceses are adjusted from time to time. Embedded
experiments can be applied to detect and quantify possible
trend disruptions in these time series due to necessary
changes to a sample survey and provide a safe transition
from an old to a new survey design. Running the old and
new surveys concurrently by means of an embedded
experiment creates the possibility of falling back on the old
gpproach for regular publication purposes if the new
approach turns out to be afailure.

Applications of embedded experiments in the literature
are amed a the estimation of the bias or the various
variance components in total measurement error models.
Mahalanobis (1946) introduced the idea of embedding
experiments in ongoing sample surveys, probably for the
first time, asinterpenetrating subsampling to test interviewer
differences under smple random sampling and unrestricted

randomization of sampling units to interviewers. Fellegi
(1964) and Hartley and Rao (1978) generdized this
gpproach to edtimate response variances under more
complex sampling designs and restricted randomization of
sampling units. Fienberg and Tanur (1987, 1988, 1989)
discuss the differences and pardlels between the theory of
experimental designs and finite population sampling and
how the statistical methodology employed in both fields can
be combined in a useful and natural way in the design and
andysis of embedded experiments. In their 1988 article,
they give a comprehensive overview of applications of
embedded experiments mentioned in the literature.

The typical situation considered in this paper is a field
experiment designed to compare the effect of K different
survey implementations, i.e, the treatments, on the main
estimates of the finite populaion parameters of a current
survey. To thisend, a probability sample that is drawn from
a finite target population is randomly divided into K
subsamples according to an experimental design. Each sub-
sample is assigned to one of the K treatments. The experi-
mental designs considered in this paper are completely
randomized designs (CRD’ s) and randomized block designs
(RBD'’s) where sampling structures like strata, primary
sampling units (PSU’s), clusters or interviewers are
potential block variables. Generally one large subsample is
assigned to the regular survey, which will be used for
official publication purposes and which will simultaneoudy
serve as the control group in the experiment. The purpose of
embedded experiments is the estimation of finite population
parameters under the different survey implementations and
to test hypotheses about the differences between estimates
of those parameters.

At first instance, a standard model-based approach might
be considered for this analysis. Since experimenta units are
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drawn by means of a complex sampling design without
replacement from afinite population, the application of such
an approach might result in design-biased parameter and
variance estimates. This makes the analysis results incom-
mensurate with the parameter and variance estimates of the
ongoing survey, which complicates the interpretation of the
results in the design-based setting of the sample survey. To
make the anadysis more robust to departures from the
assumed moddl, a design-based anadysis that accounts for
the sampling design should be applied.

Before we present our design-based approach two
dternatives are mentioned that, at first glance, seem to be
correct. We briefly argue, however, that both alternatives
generaly giveinvalid results. Thefirst dternative isto apply
a design-based linear regression analysis that accounts for
the sampling design to estimate and test hypotheses about
the K treatment effects in the regresson model. This
approach eadly results, however, in wrong design variances,
since the randomization of the experimenta design is
ignored. The main analysis objective of embedded experi-
ments is to compare the effect of dternative survey
gpproaches on the main estimates of the current sample
survey. A linear regression analysis doesn't precisely meet
this objective, since the treatment effects in the regression
model are generally not equa to the differences between the
subsample estimates.

The second dternative is to apply a design-based
inference for comparing domain parameters, in which the K
treatments are considered as K domains. The objective of an
embedded experiment, however, is to compare estimates of
the same parameter under different survey Strategies or
treatments, wheress in the case of domain parameters the
objective is to compare estimates of different population
parameters under basically the same survey strategy.

The approach presented in this paper can be summarized
as follows. Based on the K subsamples, a design-based
estimator for the population parameter observed under each
of the K treatments, and a design-based estimator for the
covariance matrix of the K —1 contrasts between these
estimates are derived. This estimation procedure accounts
for the probability structure of the sampling design, the
random assignment of sampling units to treatments due to
the experimental design, and the weighting procedure
gpplied in the ongoing survey for the estimation of target
parameters. This gives rise to a design-based Wald statitic
to test the dtated hypotheses about differences between
sample survey estimates.

The main contribution of this paper is to provide a
general framework for comparing K dternative survey
approaches in the redistic situation of a full-scae sample
survey process. The random selection of sampling units
from a finite target population by means of a probability
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sample is used in combination with randomization of the
sampling units over different treatments according to an
experimental design. This facilitates comparison of ater-
native survey implementations on the main outcomes of a
sample survey and the generalization of the observed results
to populations larger than the sample included in the
experiment. The analysis procedure proposed in this paper
generdlizes the andysis of two-treatment experiments
embedded in sample surveys (Van den Brakel and Renssen
(1998) and Van den Brakd and Van Berkd (2002)) to
CRD’s and RBD’s with K >2 treatments. An important
result is that the design-based estimator for the covariance
matrix of the contrasts between the subsample estimates has
a relatively smple structure, as if the sampling units were
drawn with replacement and unequa selection probabilities.
As a result neither joint incluson probabilities nor design-
covariances between the subsample estimates are required
in the variance estimation procedure. This results in an
atractive and relatively smple analysis procedure. A
second advantage is that this procedure tests hypotheses on
differences between the sample estimates of the survey,
which facilitates the interpretation of the analysis results in
many applications.

A design-based theory for the analysis of embedded
experiments is presented in section 2. In section 3 it is
explained in more detal why the design-based linear
regression analysis is less appropriate. In section 4, the
proposed design-based analysis procedure is evaluated in a
simulation study. Conclusions are summarized in section 5.

2. Analysisof Embedded Experiments

2.1 Measurement Error Models

Although the analysis procedure for embedded experi-
ments proposed in this section is design-based, some use is
made of measurement error models. Testing systematic
effects of different survey methodologies on the outcomes
of a survey implies the existence of measurement errors.
The traditiona notion that observations obtained from
sampling units are true fixed values observed without error,
generaly assumed in design-based sampling theory, is not
tenable in such situations. Therefore a measurement error
mode is specified for the observations obtained under the
different survey implementations or treatments of the
experiment. This modd links the treatment effects to
systematic differences between finite population parameters.

Congder a finite population U of N individuals. Let
variable y,, denote the potential response of the i™ indi-
vidud (i=12,...,N) observed by means of the k™
treatment (k=12,...,K) and the 1" interviewer
(1=12,...,L). It is assumed that these cbservations are a
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redization of the measurement error modd vy, =
u, +By + v, +¢,.Here u, isthetrue, intrinsic value of the
i™ individual, B, the effect of the k™ treatment, v, the
effect of the I™ interviewer onthe i ™ individual and €, an
error component of the i ™ individual observed by means of
the k™ trestment. The interviewer effect v, alows for
systematic clustering and correlation between the responses
of the individuals assigned to the same interviewer due to
fixed and random interviewer effects, i.e, v, =y, +§,,
with vy, the fixed and €, the random effect of the |
interviewer. Besides interviewers, common factors such as
coders and supervisors might also induce correlation
between the responses of theindividuals.

Since for each sampling unit a potential response variable
is defined for each of the K different trestments, the
messurement error model can be expressed in matrix
notation as

Yi =Ju +B+jy, +¢, ey
where Y = (Vigs-oos Yia)'s B=(Br-s Bi)' & =
(€. 8) ad j=(@...,)". Let E, and Cov,,
denote the expectation and the covariance with respect to

the measurement error modd. The following model
assumptions are made:

E,.(g)=0, 2
X =T
Covm(si,si,)—{o: e ©)
En()=0, 4)
B El
Cov,,(§,&r) —{0: |21 ©)
Covp(y,&) =0, ©)

where 0 isa vector of order K with each element zero and O
amatrix of order K x K with each element zero. If v, =0,

then a model with only random interviewer effects is
obtained. If t7 =0, then a model with only fixed inter-
viewer effects is obtained. From the assumptions, it follows
that

En(Yi)=iu +jy, +B, ™
and
Yo+jjtats i=i’ and 1=I
Cov (Vi ,Yir) = jj't?: iz’ and I=I".(8)

O: i#i" and |2l

Any correlation between the responses of different indi-
viduals can be modeled by means of random interviewer
effects. Any fixed interviewer effects influence the expected
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response values. From now on, for notational convenience,
the subscript | will beomitedin y,, and y;,.

2.2 Hypotheses Testing

The messurement error modd for the observations
obtained in the experiment enables us to relate systematic
differences between population parameters to the different
survey implementations. Suppose that L interviewers are
available for the data collection. The population U of size N
can conceptualy be divided into L groups U, of size
N,,I=1..., L, suchthat dl individuas within a group are
potentialy interviewed by the same interviewer. Let
Y=(,Y,,...,Y)" denote the K dimensional vector of
population meansof vy, i.e,

V:jii U-+B+jZL: ﬁw +jZL:ﬁ<“; +iis- 9)
NG G NTUENTONGT

The objective of the experiment is to investigate whether
there are systematic differences between the K population
means of Y due to the K different survey strategies or
treatments. This can be accomplished by formulating hypo-
theses about

— .13 ~ N
Em(Y):JW; Ui+J|Z1: W'WH‘B, (10)

where the expectation is taken over the measurement error
model. This givesrise to the following hypothesis.

H,:CE,Y =0,
H,:CE,Y #0, (11)

where C denotesa (K —1) x K matrix with K —1 contrasts
and 0 a K —1 vector of zeros. Since Cj =0, it follows that
CE,Y =CB and hypothesis (11) concerns the treatment
effects as represented by § in the measurement error model
(2). The contrasts between the population parameters negatly
correspond to these treatment effects. For the randomized
experiments considered in this paper, it holds that each
experimental unit assigned to an interviewer | has a nonzero
probability of being assigned to each of the K treatments.
Therefore, the bias in the parameter estimates due to fixed
interviewer effects is the same under each of the K
treatments and cancels out in the K —1 contrasts between
the K parameter estimates.

Hypothesis (11) will be tested by egtimating E_Y
instead of B, taking into account the sampling design, the
experimental design, and the weighting procedure of the
ongoing survey applied for the estimation of population
parameters. To test (11), a probability sample drawn from a
finite population is available. The sampling units
(experimentd units) are randomized over K subsamples and
are assigned to one of the K treatments. In section 2.3 a

Statistics Canada, Catalogue No. 12-001-XIE



26 Van den Brakel and Renssen: Analysis of Experiments Embedded in Complex Sampling Designs

design-unbiased estimator for E,Y, denoted Y isderived.
For example Y may be the Horvitz-Thompson estimator or
the generdized regresson estimator. Let V denote the
covariance matrix of Y. An (approximately) design-
unbiased estimator for the covariance matrix of the K -1
contrasts of Y, denoted CVC!, will be derived in section
2.4. Now, hypothesis (11) can be tested by means of the
following design-based Wald datigtic:

W =Y'C!(CVC!)CY. 12)

For mathematicd convenience, we prefer the contrast
matrix C=(j:—1), wherej isa K —1 vector of onesand |
the (K —=1)x (K —1) identity matrix.

2.3 Estimation of Treatment Effects

2.3.1 Horvitz-Thompson Estimator

Condder a sample s drawn by a generally complex
sampling design, that can be described by the first and
second order inclusion probabilities ; and =, of the i"
and i,i”™ sampling unit(s) respectively. In the case of a
CRD, sample s is randomly divided into K subsamples s,
of size n. If n_ =>f, n, denotesthe number of sampling
units in s, then the conditiona probability that the i™
sampling unit is sdlected in subsample s, given that
sample s is selected, is equal to n /n,. In the case of an
RBD the sampling units are, conditionally on the
realization of s, deterministically divided into J blocks s;.
Potential block variables are sampling structures like strata,
clusters, PSU’s, interviewers and the like. Within each
block, the sampling units are randomized over the K
treatments. Let n,, denote the number of sampling unitsin
block j assigned to trestment k. Then n,, =3, n;
denotes the size of block |, n,, =37, n, denotes the size
of subsample s, and n_, =¥, ¥}, n, denotes the size
of sample s The conditiona probability that the i™
sampling unit is sdlected in subsample s, given that
samplesissdlectedand i€ s;, isequa to ny, /n;,.

Each subsample s, can be consdered as a two-phase
sample, where the first order inclusion probabilities of the
first phase sample are obtained from the sampling design
and the conditional first order inclusion probabilities of the
second phase sample are obtained from the experimental
design. From this point of view, the first order inclusion
probabilities for the dements of s, ae equa to w =
(n./n,)m for CRD'sand m; = (n, /n,,) m for RBD'sif
this i™ sampling unit is assgned to the j™ block. It
follows that the Horvitz-Thompson estimator for Y, , based
on the n,, observations obtained from subsample s, can
be defined as.
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N

N2 Yo _ 1 & Py
Y .r = = , 13
e = N; - (13)

1
N

N

where p,, are K—vectors that describe the randomization
mechanism of the experimenta design. For a CRD, it
follows that

Dere it ies,
Pik =9 Ny “ ' 149
0 if igs
and for an RBD
o if ies
Pik =19 Nk “ , 15
0 if igsy

where r, denotes the unit vector of order K with the k™
element equal to one and the other elements equal to zero
and O denotes a K vector of zeros. Properties of the vectors
p;« aegivenin the gopendix.

Now, since s, can be considered as a two-phase sample
it holds that E.E.(Y,rlsm)=Y,, where E; and E,
denote the expectation with respect to the sample design and
the experimental design, respectively. So, given m, the
vector Yy = (Yupry--os Yur)' IS proposed as a design-
unbiased estimator for Y. But then, Y,,; is unbiased for
E,Y.

2.3.2 The Generalized Regression Estimator

In finite population sampling it is customary to increase
the accuracy of the Horvitz-Thompson estimator, if suitable
auxiliary information is available, by means of the gene-
ralized regression estimator, see e.g., Bethlehem and Keller
(1987) and S&rndal, Swensson and Wretman (1992). The
generalized regression estimator enables us to incorporate
the weighting scheme of the ongoing survey in the analysis
of embedded experiments. This might decrease the design
variance aswell as the bias due to sdlective nonresponse and
therefore it may increase the accuracy of the experiment. In
the present context the generalized regression estimator
therefore represents a design-based analogue of covariance
anadysisin standard experimental design methodology.

Besides the values of the response varigble y;, we aso
associate with each unit in the population an H-vector x;,
of auxiliary information. The finite population means of
these auxiliary variables are assumed to be known and are
denoted by X. It isalso assumed that the auxiliary variables
are intrinsic values, that can be observed without measure-
ment errors, and so are not affected by the treatments. When
the model assisted approach of Sarnda et al. (1992) is
followed, the intrinsic values u, in the measurement error
model of section 2.1 for each unit in the population are
assumed to be an independent redization of the following
linear regression model:
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u =B'x+e, (16)

where B is an H-vectors containing the regression
coefficients and the ¢ are the residuals. In the mode
assisted gpproach of Sérndal et al. (1992), the intrinsic
values u; are considered to be aredlization of an underlying
superpopulation model defined by (16). In this case the
residuals ¢ are independent random variables with a
variance »’. Thenitisrequired that al o? are known up to
a common scale factor; that is @’ =v,0> with v, known.
From a dtrictly design-based point of view, proposed by
Bethlehem and Keller (1987), there is no need to adopt a
superpopulation modd. In that case the residuas are fixed
intrinsic values of the elements in the finite population and
no model assumptions about the residuds are needed. In this
paper, the modd assisted approach of Sarndd is adopted.
This implies that expectations with respect to the measure-
ment model, as in (7) and (10), are conditional on the
redization of the intrinsc vaues u;,i=1...,N, in the
finite population according to the superpopulation model
(16).

The regression coefficients of the linear model (16) in the
finite population are defined as

The intrinsic values u, ae not observable due to
measurement errors and treatment effects. Consequently,
(17) cannot be computed, even in the case of a complete
enumeration of the finite population. In the case of a
complete enumeration under the k™ treatment

- Nyt YN v

denotes the finite population regression coefficients of the
liner modd (16). Conditiond on the redization of
u,i=1...,N, the expectation of the finite population
regression coefficients Bk with respect to the measurement
error model isgiven by

Eb,= (Z '

=1 (D

j ZN: X; (U, +Bk+W|) by,

k=12,...,K. (29)

The finite population regression coefficients Bk and b,
can be estimated using the sample data from subsample s,
with the Horvitz-Thompson estimator:

N Ny XX[ _1n+k X
bo=[3 228 ) 3 X0

o O ) T O

k=12,...,K.
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Now the generalized regression estimator for Y,, based on
the n,, observations of subsample s,, isdefined as

Y,

kigreg —

Yorr +BL(X = Xpp), k=12,...,K, (20)

where YHT denotes the Horvitz-Thompson estimator for
the population means of the auxiliary variables X based on
the n,, sampling unitsof subsample s,.

When expressing (20) as a function of (Y., bk , XHT)
the generdized regression estimator can be approximated by
means of a firs order Taylor linearization about
(E,, Y., by, X), where b, isdefinedin (19). Thisgives:

Y,

kgreg_

Yo +bL (X=X yr)=Epr +bIX, k=1,2,... K,

with

S S = t - —B'x.
Ek;HT =Yk;HT _bL Xyt =Z (MJ’
ies 7ti N

and where B isan H xK matrix of which the columns are
the H-vectors b,. Now Ypee = (Yigeg: -1 Yk, g]reg)
proposed as an approximately design-unbiased &stlmator for
E.Y.
2.4 Variance Estimation of Treatment Effects

Let V denote the covariance matrix of Ygpes. TO
estimate the covariance terms of V, vectors y; containing
the observations of al K trestments obtained from each
sampling unit are required. Since in the experimental
designs under consideration each sampling unit is assigned
to one of the K treatments, only one of the components of
y,, for ie s, isactualy observed. Consequently, a design-
unbiased estimator for VV cannot be derived. Van den Brekel
and Binder (2000, 2004) tried to overcome this problem by
imputing the unobserved components. The usefulness of
their results, however, depends on the correctness of the
imputation model. In the present paper, this problem is
circumvented by deriving a design-based estimator for
CVC', i.e, the covariance matrix of the contrasts of
Yeres, Whichissufficient for the Wald statistic (12).

Expressions for the generdized regression estimator are
derived first. Results for the Horvitz-Thompson estimator
are given as a special case. The covariance matrix of the
contrasts of Ygree Can be approximated by the covariance
matrix of the contrasts of E,; = (Ep.jy7, ..., E.ir)'- Let
Cov, and Cov, denote the covariances with respect to the
sample design and the experimental design respectively.
Now, consider the following variance decomposition:

CVC'=Cov, E.E,(CE,;|m,s)
+E, Cov E,(CE,|ms) +E, E.Cov (CE, jms). (1)
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Since E (p,) =1, (see(42) in the appendix), it follows that

E.(E;Jms) = > [MJ (22)

ies T N

Under the condition that a constant H—vector a exists such
that a'x; =1 forall ie U, itisproven in the appendix that

C(y; -B'x) =Cs;. (23

The stated condition implicitly assumes that the size of the
finite population is known and is used as auxiliary informa-
tion. This condition holds for weighting models that contain
an intercept or one or more categorica variables that parti-
tion the population into subpopulations. Using model
assumptions (2) and (3), it follows from (22) and (23) that

~ N
Cov,E.E.(CE,;Im,s) = Covm(iz Csij

- zczc (24)

N2

and

~ 1 N N
E.Cov.E.(CE,r|ms) = Emvz > (my —mmy)

i=1 i'=1
t ~t N
« Csisi'C 1 Z (i—lch Ct (25)
T o\ T

For thethird term in (21), it is proven in the gppendix for
an RBD that

E, E.Cov,(CE,|m s)=E,E,(CDC')

crc 26
L3R o

T

whereD isa K x K diagond matrix with diagonal elements

i+

=
S

=> —.(27)

= Ny

nj+(yik_bkxi) 1 &
[ Nm Z

i N, ima

1+(y| kXi')JZ: J Sé

If the results obtained in (24), (25) and (26) are inserted in
(22), then it follows that

cvC' =E, E.CDC. (28)

Conditionally on the redlization of m and s, an approxi-
mately design-unbiased estimator for D in (28) can be
derived. Therefore, CVC' can conveniently be stated
implicitly as the expectation over the measurement error
model and the sampling design. See Van den Brake (2001)
for explicit expressions for CVC'. Given the realization of
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m and s, the dlocation of the sampling units within each
block to the subsamples s, can be considered as smple
random sampling without replacement from block s;.
Consequently, for an RBD it follows that an approximately
design-unbiased estimator for D is given by a KxK
diagonal matrix D with diagonal elements

D
= M M- 14
D008 18 10 BX) )¢ K, (o)
NTEi Ny iz Nni' LT

An approximately design-unbiased estimator for CVC' in
(28) is given by CDC'. Resuits for a CRD follow di rectly
as a specia case from (27) and (29) where J=1,n,,

and n, =n,. Asan dternative, the resduas (y, — b‘x )
in (29) can be multiplied by the correction weights (also
caled g—weights, Sarndal et al. 1992, result 6.6.1). Since,
CVC' in (28) is defined implicitly as the expectation over
the sampling design, (29) is approximately design-unbiased
under generd complex sampling schemes. This variance
estimator only requires that the fraction of sampling units
assigned to the different trestments according to the
experimental design is fixed in advance. The size of the
sample as well as the blocks might be random with respect
to the sample design, eg., in the case of an RBD where
clusters or PSU’s are the block variable.

The variance estimator CDC' has a structure as if the K
subsamples had been drawn independently from each other,
where the sampling units are selected with unequa proba-
bilities (w; /n,) with replacement in the case of a CRD, or
(m; /n;,) with replacement within each block j in the case
of an RBD (compare (29) with Cochran 1977, equation
(9A.16)). It is remarkable that the second order inclusion
probabilities of the sampling design have vanished. This is
caused by:

1. The assumption of additive treatment effects in the
measurement error model, i.e, B, for al ieU
observed under treatment k.

2. The assumption that measurement errors between
individuas are independent.

2. A properly chosen weighting scheme such that the
condition a'x; =1 foral ie U issatisfied.

4., The fact that variances are cdculated for the
contrasts between the subsample means.

The design variance of the first-order Taylor series approxi-
mation of the generalized regression estimator consists of
the residuals (y,, — b, x;). From the proof of (23) it follows
that under a weighting scheme that satisfies the condition
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a'x, =1 fordl ieU, thetreatment effects B, vanish from
the residuals (y, —b}x;) in (23). In these residuals three
terms remain:

1. The residua of the linear regresson modd of the
intrinsic value, i.e, & =u, —b'x;.

2. A term concerning the bias due to the interviewer
effects. This term is equal to v, —d'x,, where d
denotes the regression coefficients from the
regression function of the interviewer effects on the
auxiliary varigbles x;, (see proof of (23) in the
appendix).

3. Themessurement errors g, .

The residuals of the intrinsic values ¢ and the bias due to
the interviewer effects do not depend on the different treeat-
ments and therefore cancel out in the contrasts of the resi-
duasin (23). Only the messurement errors g, remainin the
contrasts of the residuals in (23). As a result, the two terms
Cov,E.E.(CE,;Ims) and E,Cov.,E,(CE,;|m,s)
only contain the measurement erors g,. Due to the
assumption of independence of the measurement errors
between individuals, the cross products between individuals,
which contain the second order inclusion probabilities in
(24) and (25) vanish. The covariance structure of the third
term of (21) is mainly determined by the randomization
mechanism of the experimental design. For a CRD this
comes down to the selection of K subsamples from s by
means of smple random sampling without replacement. For
an RBD this comes down to the selection of K subsamples
from s by means of dratified smple random sampling
without replacement where strata correspond to the blocks
of the experiment. In the variance of the contrasts of the
subsample means, the finite population corrections in the
design variance of the subsample means cancel out againgt
the design covariance between the subsample means. As a
result, the leading term of (26), i.e, E,E.CDC', has a
structure as if the K subsamples were drawn independently
of each other by means of simple random sampling with
replacement in the case of a CRD, or dratified simple
random sampling with replacement in the case of an RBD.
Second order inclusion probabilities appear if the
expectation with respect to the sampling design in (28) is
made explicit, see Van den Brakel (2001).

The minimum use of auxiliary information is aweighting
scheme where x; = (1) and o =®” for al ieU. Under
thisweighting schemeit follows that

_lTC

y'_k J = Vi (30)
which can be recognized as the ratio estimator for a
population mean, originally proposed by Hgek (1971). It
dso follows that b, =(y,) and that an approximately
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design-unbiased estimator for the covariance matrix of the
treatment effect5|s given by (29) with bk X; = V-

If >/ nl =N=N, then the ratio estimator (30)
corresponds with the regular Horvitz-Thompson estimator.
This condition is satisfied in the case of a CRD or an RBD
embedded in a simple random sampling design, an RBD
embedded in a gratified simple random sampling design
where drata are used as block variables or a CRD
embedded in a dratified smple random sampling design
with proportional allocation. Under the condition N =N,
expressons for the design variance of the Horvitz-
Thompson egtimator are given by (27) and (29), where
Y, —bix, and y, —bix, are replaced by y,.Variance
expressions for the Horvitz-Thompson estimator are more
complicated if N = N, seeVan den Brakel (2001).

25 TheWald Test

Inserting the designunbiased estimators for the
subsample means and the covariance matrix of the contrasts
between these subsample means into (12) leads to the
design-based Wald statistic

W = ﬁéREG c' (CE)C[)AC%GREG' (3D
It is proven in the appendix that this expression can be
smplified to:
~ ~ 2
W 2
W =ZK: Y"Lgreg 1 ZK: Yklgreg : (32
k=1 dk ZK ,\i k=1 K
k=1

For general sampling schemes, the asymptotic distribu-
tion of this test statistic will be unknown. However, if the
sampling design is smple random sampling without
replacement and the experimental design is a CRD, then
Lehmann (1975, appendix 8), based on the work of Hgjek
(1960), gives sufficient conditions under which E,; is
asymptoticaly multivariate normal distributed with mean

E.(ExrIm s)=E and covariance matrix V = Cov,
E;(Eyr IMms) + E;Cov, (Eyr IMms) if n, —e and
(N-n,,)—eo: (Er[M)—N(E, V). Hence, (CE,|m)—
N(CE, CVC'), with CE = (1/ N) 3, Cg,. Sincethe Cg,
are mutually independent random variables with means
equal to zero and covariance matrix CY; C' we have by
the ordinay centra limit theorem (CE)—
N(0, 1/ N?)ZN, CY; C"). Combining both limit distri-
butions we obtain that unconditionadly CE,;—
N(O,CVC") andthus CYgee;— N(CB, CVC'). Asa
result it follows under the null hypothess that W is
asymptoticaly chi-squared distributed with K —1 degrees
of freedom (Searle 1971, theorem 2, chapter 2). For more
complex sampling designs it is usudly conjectured that
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CV¥snes— N(CB, CVC'). Then W is till asymptotically
chi-squared distributed with K —1 degrees of freedom. The
validity of this conjecture has been confirmed by simulation
studies, see section 4 and Van den Brakel (2001).

2.6 Pooled Variance Estimators

In the case of an RBD the n,, sampling units of s are
divided into JK groups of size n]k For each of these JK
subsamples separate population variances Sék have to be
estimated. If the number of experimental units n;, available
for the estimation of these population variances becomes too
small, then these estimates might become unstable. In such
situations, more stable estimates can be obtained by pooling
estimates of the population variances within the blocks.

The residuas of the generalized regression estimator,
(Y, —bix,), only depend on the k™ treatment effect
through the messurement errors ¢;,. Under the assumption
that X, =c?l in (3) for dl ieU, it follows that the Sék
within each block ae identica parameters ie,
SE = _SE SE for j=1,2,.. Under this
assumptlon it isefficient to useapooled estlmator for SE

. K
TR Ib)
k 1 i=1
ni+(yik_6t<xi)_ 1 & & nJ+(y|k bLX) (33)
[ Nni n]+ ; ;
or dternatively
St ip,
+ K) k=1 i=1
. 2
N, (Yic _bLXi) _i% N, (Yic -byx) (34)
N, = N, .

There are several specia cases where the design-based
Wald statigtic coincides with the F—statistics known from
more standard model-based anaysis procedures. Consider
an RBD embedded in a sdf-weighted sampling design
where sampling units are alocated proportionally to the
treatments over the blocks, ie, w=n_,/N and
ng/n,=n,/n_ foradl j=1...,J3. Then, it follows
from the results obtained for the ratio estimator (30) that
Vk;greg:l/ Nk Zln;]k. Yik = y+k and BLXi = y+k' Denote
7j+ =1/ nj+zin:ji yik and y++ =1/ n++sz:1 Z&J‘f yik’ then it
follows that

1 K Ni _ 1 K Nj ~
_z Yik = Vi —z b.x =
Ny kaia Nj; laia

1 K K, Ny Kon, o

ZZ *k:Z +k=Z . Yik = Yir
N, =i kN Pl |

J+
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If n;, =n;, -1, then it follows under the pooled variance
estimator (33) that

R J n n K N
d = i+ i+
“ é Ny N, _1k2:; =
Yik bLX| _iinzk Yik BLX|
an n]+ k=1 i=1 Nni
11 o ]

(y|k Vi — yJ+ + y++)2 n —2 (35)

1 i=1 Lk

Denote Y, =1/n; X% y,.. Under the pooled variance

estimator (34) it follows that

=L, (36)
n

Substituting these pooled variance estimators into the Wald
gatistic (32), leadsto

:d‘i[z n+k(y+k)2_n++(y++)2j’ (37)
P, \k=1

where apa is given by either (35) for a=1 or (36) for
a= 2. It can berecognized that W /(K —1) in (37) with dg
the pooled variance estimator (35), corresponds with the
F-statistics of an ANOVA for a two-way layout without
interactions. If dp (36) is inserted, then W/(K -1)
corresponds with the F—datistics of an ANOVA for a
two-way layout with interactions (Scheffé 1959, chapter 4).
A pooled variance estimator for a CRD follows as a specia
case from (35) and (36). Under both estimators it follows
that W /(K —1) corresponds with the F—statistics of the
one-way ANOVA (Scheffé 1959, chapter 3).

2.7 Advantagesof RBD’s

The main advantage of RBD’s is the dimination of the
variaion between the blocks in the analysis of treatment
effects. Sampling units from the same stratum, PSU or
cluster generally have a higher degree of homogeneity
compared with sampling units from different strata, PSU’s
or clugters. This suggests using sampling structures like
srata, PSU’s or clusters as block variables in an RBD
(Fenberg and Tanur 1987, 1988). Using these sampling
structures as a block variable in an RBD, ensures that each
sratum, PSU or cluster is sufficiently represented within
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each subsample. Also interviewers are potential block
variables, snce this eliminates the variation in the observa-
tions due to fixed or random interviewer effects specified in
measurement error model (1). For surveys where inter-
viewers collect data by means of CAPl in seperated
geographica areas, blocking on interviewers a so diminates
thisregiona variation from the target variable. The power of
an experiment is maximized if sampling units are allocated
proportionally to trestments over the blocks, i.e,
ng/n,=n,/n, foral j=1...,J (seeVan den Brakel
2001, chapter 6). This allocation is better preserved if
interviewers are used as the block variables, since response
rates between interviewers differ substantialy. Unrestricted
randomization by means of a CRD is not always feasible
from a practical point of view. For example in CAPI
surveys where interviewers collect data in geographica
areas surrounding their places of resdence, restricted
randomization of sampling units within interviewers or
geographical regions which are unions of adjacent inter-
viewer regions might be required to avoid an unacceptable
increase in the travel distance of the interviewers. This
naturaly leads to RBD’s with interviewers or regions as
block variables.

3. Design-Based Linear Regresson Analysis

A design-based linear regression might be considered as
an dternative for the analysis of embedded experiments.
The observations are assumed to be the outcome of a linear
regresson model y, =B'x, +g, with x, the vector
containing Q explanatory variables, B the vector containing
the regression coefficients, and g aresidua. This model is
mainly determined by the experimenta design and contains
the treatment factors, local control factors (e.g., blocks) and
covariates as explanatory variables (see eg., Montgomery
2001). Potentia covariates are the auxiliary variables in the
weighting scheme of the generalized regression estimator.
The parameters of interest are the regression coefficients in
the finite population, which are defined by p=
(X'X) X'y, where X is the NxQ design matrix of the
experimental design, and y a N vector containing the
observations obtained under the different trestments, as if
the entire finite population is included in the experiment.
The design matrix conceptualy divides the population into
K subpopulaions or domains, which are observed under
each of the K treatments of the experiment. The size of each
subpopulation is determined by the fraction of sampling
units assigned to each treatment in the experiment. A
design-based estimator for the regression coefficients is
givenby p=(X'I7X,) X MYy, , (Sandal et al. 1992,
section 5.10). Here X, isthe nxQ design matrix, y, a
vector containing n observations obtained under the
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different treatments of the n units included in the sample,
and IT a nxn diagona matrix containing the first order
inclusion probabilities w; of the sampling design. The
approximate covariance matrix of ﬁ is given by (Sérnda
et al. 1992, section 5.10)

Var(B) = (X'X)*A(X'X)?, (38)

with A =Var,(X!II'y, — X . IT™X_B). The dements of
A aegiven by

qu’ = g,i;(nii’ _nini’)%%’ 9,9=1...,Q,
with e =y, —B'x,. Hypotheses about the subset of
regression coefficients that reflect the treatment effects
are tested with aWald test, see e.g., Skinner (1989).

The magor drawback of this approach is that the
edtimation procedure doesn't account for the random
assignment of sampling units to treatments according to the
experimental design. In doing so the subsample estimates
are erroneoudly treated as if they were domain estimates,
which results in wrong design-variances. The covariance
matrix of the treatment effects (28), derived in section 2.4,
illustrates that the superimposition of the experimental
design on the sampling design determines which specific
features of the sampling design are nullified or preserved.
For example, the effect of stratified sampling or two-stage
sampling on the variance of the treatment effectsis nullified
under a CRD. This effect, however, isignored by the linear
regression approach, since Var(ﬁ) only accounts for the
variance of the sample design. Disregarding the experi-
mental design in the variance estimation procedure becomes
even more obvious under a complete enumeration of the
finite population. Due to the experimental design, the entire
finite population is randomly divided into K subsamples and
the parameters under the different treatments are ill
estimated with a nonzero design variance. In this situation it
follows for the linear regression approach that fi: B and
that Var(f}) is equal to zero because the design-variance
induced by the experimentd design is ignored. This
contrasts with (28) that under a complete enumeration till
reflects the design-variance due to the experimental design.

It is not immediately evident how the linear regression
approach can be adjusted to alow for the randomization due
to the sampling design as well as the experimenta design.
Conditionally on the redlization of the sample, the
experimental design can be described by first and second
order inclusion probabilities. Let Tl:ik|s denote the first order
inclusion probability that the i sampling unit is assigned
to the k™ trestment and let ifs; denote the second order
inclusion probability that i™ sampling unit is assigned to
the k™ treatment and the i"™ sampling unit is assigned to
the k'™ trestment. A design-based estimator for p that
accounts for the sampling design and the experimenta
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design is given by B=(X X, )*X!IYy,, where
IT", denotes the nxn diagonal matrix with first order
inclusion probabilites m; =, n,ls An gpproximation for
the covariance matrix of |3 is given by (38), where A is
obtained by conditioning on the redlization of the sample,
ie,

A= VarsEe(x:qH*ilyn - thH*ilan)
+EVa,(XiI 1y, — X T X ).

This leads to the following expression for the elements of
A

= > (my - nini,)@ %
ieU ieU ; T,
+ZZﬂn'(nﬁﬁ; s ,|S) Xq q Xrq q
ieU i'eU | Tci/

which has the variance siructure of a two-phase sample,
where the first phase corresponds to the sampling design
and the second phase to the experimental design. The
sampling units are, according to the experimentd design,
assigned to only one of the K trestments. As a result it
follows that i =0 for k=K', and i =i’, which hampers
the derivation of an approximatdy design-unbiased
estimator for the covariance terms of Var(f}), see dso
Vanden Brakel and Binder (2000, 2004). In the andysis
procedure proposed in section 2, this problem is
circumvented by deriving a design-based estimator for the
covariance matrix of the contrasts of CY g instead of an
estimator for the covariance matrix of Y itself.

4. Simulation Study

In subsection 4.1, a smulation study is conducted to
evaluate the performance of the design-based estimator for
the covariance matrix of the contrasts between the
subsample estimates CDC' with diagonal elements (29) as
well as the design-based Wald statistic W defined by (32) to
test hypotheses about these contrasts. Subsequently, this
design-based Wald tedt, the design-based linear regression
gpproach and a standard ANOVA are applied to the analysis
of aCRD and an RBD in subsection 4.2.

4.1 Evaluation of the Unbiasednessof CDC! and the
Distribution of W

In this simulation study, a measurement error model
without interviewer effectsis assumed, i.e.,

Yik = U + By + & (39)
An artificial population consisting of 3 strata, 450 PSU'’s
and 109,500 SSU’'s is generated by randomly drawing

strictly positive values for the intrinsc values u; of atarget
parameter. The sizes of the PSU’s in the population are
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unequal. The intrinsic values are generated in two steps.
Firg, a positive value for each PSU in the population is
drawn from a uniform distribution. Subsequently a positive
value for each SSU, also drawn from a uniform distribution,
is added to the value obtained for the PSU in the first step.
Within each stratum different lower and upper boundaries
and interval-widths for these uniform distributions are
applied, such that the population can be sratified into three
relatively homogeneous subpopulations. Theintervals of the
uniform distributions that are applied in the second step are
smaller than the intervals of the uniform distributions in the
first step. This resulted in a population where the intrinsic
values for the SSU’s within each PSU are clustered. The
structure of the population is summarized in Table 1.

Tablel
Population
Intringc value of target parameter
Stratum  Number of Number of Mean Sd. Min. Max.
PSU's SSU’'s dev. vaue vaue
1 70 6,250 22,183 12,001 7,607 50915
2 130 18,250 6,128 1,866 3,007 10,490
3 250 85,000 1,407 732 512 3,248
Totd 450 109,500 3380 5,803 512 50915

Samples are drawn repeatedly from this population by
means of stratified two-stage sampling without replacement
with unequal inclusion probabilities. The inclusion proba-
bilities are chosen proportiondly to the size of the target
parameter. The sample szes for the different dtrata are
summarized in Table 2. For each sample, a new measure-
ment error is generated for each population element. These
measurement errors are drawn from a normal distribution
with a mean equal to zero and a standard deviation pro-
portional to the size of the intringc vaues. The range of the
gtandard deviations varied from 1,000 for the SSU’s with
the largest intrinsic values in the first stratum to 10 for the
SSU’swith the smallest intrinsic valuesin the third stratum.

Table2
Sample Design
Stratum Number of PSU’s Number of SSU’s
1 25 900
2 30 1,080
3 50 1,800
Tota 105 3,780

Findly, the samples are randomly divided into four
subsamples according to an experimental design, each with
asize of 945 SSU'’s. Two different experimentd designs are
gpplied. In the first design, the SSU’s are randomized over
the four different treatments according to a CRD. In the
second design, the SSU’'s are randomized over the four
different treatments according to an RBD, where the three
dtrata are used as the block variable. Within each block or
stratum, 1/4 of the SSU’s are randomly assigned to each
treatment. Under both experimental designs, four different
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sets of treatment effects are applied, one under the null
hypothesis and three under different alternative hypotheses.
This resulted in eight different smulations, which are
specified in Table 3. Each smulation is based on
R=100,000 resamples. Observations for the target para
meter are obtained by adding a measurement error and a
treatment effect to the intrinsic values according to (39).

Table3
Summary of Simulation Settings
Treatment effects
Experimental desgn B, B, Bs B4
CRD RBD 0 0 0 0
CRD RBD 0 20 40 60
CRD RBD 0 40 80 120
CRD RBD 0 80 160 240

The data obtained in each resample are andyzed with the
extended Horvitz-Thompson estimator (30). Let Y, denote
the subsample estimate obtained under the k™ treatment in
the r™ resample. The vector with the four subsample
estimates obtained in the r resampleis denoted by Y' =
(%, ¥5,¥5, V)", The vector with the three contrasts in the
r'" resample is equal to C\?HWithCz(jE—I),j a vector
of order 3 with each dement equal to one, and | the 3x3
identity matrix. Furthermore, a; denotes the diagonal
eements of the estimated covariance matrix, obtained under
the r™ resample. An expression for a; is given by (29)
with bix, =¥/ . The esimated covariance matrix of the
trestment _effects is equal to CD'C', with D' =
diag(d;,d;,d;,d;). Findly W' =(CY")'(cb'cH™
(CY") denotes the Wald statistic observed in the r®"
resample. Based on the R=100,000 resamples within each
simulation, the population parameters under the different
treatments can be approximated by
- 1&
Y==

R r=1
with Y =(Y,,Y,,Y,,Y,)". From (10) it follows that the real
treatment effects in the measurement error model can be
approximated by CY = Cp. Furthermore, the mean of the

estimated resample covariance matrices can be calculated as

Vr

R ~
cbc! :lz cb'ct,
R r=1

and the mean of the resample Wald statistics as
R
w=1>w, (40)
RT3

An gpproximation of the rea covariance matrix of the
treatment effectsis given by

R ~ == —
cvCt =Ri120(\(r -Y) (Y -Y)'Ch. (42)
Tl
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The performance of the variance estimation procedure is
evaluated by comparing CDC' to CVC'. If the derived
vaiiance esimator CDC! s approximately  design-
unbiased, then the mean of resample covariance matrices
CDC' mugt tend to the real covariance matrix CVC', for
R— . An impression of the precision of the derived
variance estimator is obtained by calculating the standard
deviation of the dements of CDC', and is denoted by
o (CDC}). Thediagona eementsof D are denoted d, .

If CYqree — N(CB, CVC'), then it follows that
W = Xfisp With K -1 the number of degrees of
freedom and §=1/2(CB)'(CVC')™(Cp) the non-
centraity parameter of the chi-squared distribution. In the
smulation study, the non-centrality parameter under the
dternative hypotheses can be calculated by inserting (41) in
the expression of 8. Subsequently, the power of the Wald
datistic for a particular set of treatment effects can be
caculated by P(\N) = P(X[IZK—l][S] > X[Zl—u][K—l]) where
Xfiojky denotes the (1-o)™ percentile point of the
centrd chi-squared distribution with K -1 degrees of
freedom. The performance of the Wald dtatistic is evaluated
by comparing P(W) with the smulated power, which is
defined as the fraction of significant runs observed in the R
resamples, i.e.,

. 1 R
Psm(vv) = E z - I (\Nr > X[Zl—u][K—l])!
r=

where | (B) denotesthe indicator variable which isequal to
oneif B istrue, and equal to zero otherwise. The results of
the simulations are summarized in Tables 4.1 through 4.8.

The means of the subsample estimates Y, under the null
hypotheses in Tables 4.1 and 4.5 dightly overestimate the
population mean in Table 1. This difference can be
attributed to the bias of the extended Horvitz-Thompson
estimator. The means of the contrasts between the
subsample estimates CY, however, dmost perfectly agree
with the rea treatment effects CB. The means of the
resample covariance matrices CDC' tend to the values of
the rea covariance matrices CVC', which illustrates that
the variance estimation procedure, derived in section 2.4, is
approximately design-unbiased. The relative precision of the
diagona elements of CDC' is about 10.5% under this
particular sample size. The simulated power based on the
resample distribution of the Wad statistic approximates the
real power reasonably well. On the average the smulated
power is dightly higher. The expected value of the chi-
squared distribution is equal to E(xfi _ys) = (K —1)+ 25
(Searle 1971, section 2.4.h). If the resample distribution of
the Wald statistic tends to a xfy_yys) then the mean of the
resample Wald statistics W (40) must tend to the expected
value of the chi-sguared distribution. Indeed, it follows from
Tables 4.1-4.8 that W =(K -1)+25. Moreover, the
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hypothesis that the resample didribution of the Wad
satistic under the null hypothesisis equal to the centrd chi-
squared  digtribution, is tested with the one-sample
Kolmogorov-Smirnov test. This hypothesisis not rejected at
a significance level of 5% for ether the CRD or the RBD,
and confirms the conjecture that the Wald datistic is
asymptotically chi-squared distributed under stratified two-

stage sampling without replacement, unequa inclusion
probabilities, and relatively large sampling fractions. If the
simulations under a CRD are compared to an RBD, then it
follows that blocking on srata results in a substantial
increase of the precision of the estimated contrasts and the
power of the testsin this particular situation.

Table4.1
Simulation Results CRD, g =(0, 0, 0, 0)!
Subsamples Contrasts Wald statigtic
K By \7 d Diagona elements of o P(W) PS™ (W)
1 0 3392 14311 k—K cY cvc! cDCc' o(CcDCY 0050  0.05000 0.05072
2 0 33%2 14305 1-2 0 28725 28616 3,019 0025  0.02500 0.02506
3 0 3392 14306 1-3 0 28892 28616 3,019 0010  0.01000 0.01017
4 0 3390 1429 1-4 2 28787 28603 3,019 W : 3.01591 3: 0.0000
Table4.2
Simulation Results CRD, B = (0, 20, 40, 60)"
Subsamples Contrasts Wald gtatigtic
K B Y dy Diagona eements of o P(W) PS™ (W)
1 0 3392 14,307 k—k cY cvc! CDC' o(CDCY 0050  0.05842 0.05925
2 20 3412 14307 1-2 —-20 28635 28614 3,026 0025  0.03008 0.03040
3 40 3432 14314 1-3 -40 28918 28620 3,033 0010  0.01257 0.01255
4 60 3450 14291 1-4 58 28624 28597 3,025 W : 3.14037 3: 0.0697
Table4.3
Simulation Results CRD, B = (0, 40, 80,120)"
Subsamples Contrasts Wald stetistic
k By Y. dy Diagonal elements of a P(W) PS™ (W)
1 0 3392 14314 k—k’ cY CvC' CDC' o(CDCY 0050  0.08503 0.08523
2 40 3432 14307 1-2 -40 28597 28621 3,020 0025 004704 0.04760
3 80 3472 14307 1-3 -80 28947 2862 3,022 0010  0.02150 0.02165
4 120 3511 14295 1-4 -119 28713 28,609 3,021 W : 3.55406 5:0.2783
Table4.4
Simulation Results CRD, B = (0, 80, 160, 240)t
Subsamples Contrasts Wald stetistic
k By \7 dy Diagona dements of o PW) PS™ (W)
1 0 3392 14,306 k—K cY cvct cDc'  o(cDcY 0050 021198 0.2116
2 80 3472 14310 1-2 -80 28748 28616 3,026 0025  0.13809 0.13885
3 160 3552 14312 1-3 -160 28784 28618 3,030 0010 007703 0.07781
4 240 3631 14,291 1-4 —239 28538 28598 3,022 W : 5.22065 5:1.1203
Table4.5
Simulation Results RBD, g =(0, 0, 0, 0)!
Subsamples Contrasts Wald gtatigtic
k By 7 ak Diagond e ements of o P(W) PS™ (W)
1 0 3,389 3,088 k—K cY cvct cDc'  o(cDcY 0050  0.05000 0.05168
2 0 3389 3,088 1-2 0 6,175 6,176 647 0025  0.02500 0.02640
3 0 3389 3,088 1-3 0 6,216 6,176 647 0010  0.01000 0.01060
4 0 3389 3,088 1-4 0 6,217 6,176 647 W : 3.01483 5: 0.0000
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4.2 Comparison of Three Analyis Procedures

Furthermore, three possible analysis procedures for
embedded experiments are compared, i.e., the design-based
Wald test proposed in section 2, a standard ANOVA where
al observations are equally weighted and assumed to be
i.i.d, and the dedgn-based linear regression approach
described in section 3. To this end two samples, each with a
size of 3,780 SSU’s are drawn from the finite population
specified in Table 1, by means of the stratified two-stage
sample design, which was dso used in the previous
smulation (see Table 2). For one sample, the SSU’s are
randomly divided into four subsamples, each with a size of
945, by means of a CRD. For the other sample the SSU’s
are randomly divided into four subsamples, each with asize
of 945, by means of an RBD where the strata are used asthe
block variables. Both experiments are conducted under the
dternative hypothesis where the treatment effects in the
finite population are equal to P = (0, 80,160, 240)'. The
design-based linear regression anadysis is performed with
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Stata’'s SVYREG procedure that accounts for the Stratifi-
cation, two-stage sampling and the unegqua selection
probabilities of the sampling design (StataCorp. 2001). The
ANOVA is peformed with Stata's ANOV A procedure
(StataCorp. 2001). The analysis results under a CRD are
summarized for the design-based Wald test in Table 5.1, for
the design-based linear regresson gpproach in Table 5.2,
and for the ANOVA in Table 5.3. Similarly, the analysis
results under an RBD are summarized in Tables 6.1, 6.2,
and 6.3.

As emphasized in section 3, the linear regression
approach ignores the design variance due to the random-
ization of the sampling units over the subsamples with
respect to the experimental design. As a result the standard
errors of the trestment effects are smaller under the linear
regression approach than in the case of the design-based
Wald test, and the design-based regression approach results
in smaller p-valuesfor the test of treatment effects.

Table4.6
Simulation Results RBD, B = (0, 20, 40, 60)"
Subsamples Contrasts Wald stetistic
k By \7 dy Diagona dements of o PW) PS™ (W)
1 0 3,390 3,090 k—K cY cvct cDc'  o(CcDCY 0.050  0.09099 0.09371
2 20 3410 3,089 1-2 -20 6,225 6,180 648 0025  0.05096 0.05238
3 40 3430 3,090 1-3 -40 6,177 6,181 648 0010  0.02365 0.02405
4 60 3450 3,090 1-4 -60 6,184 6,180 649 W : 3.66771 5:0.3226
Table4.7
Simulation Results RBD, B = (0, 40, 80,120)"
Subsamples Contrasts Wald statistic
k By \7 dy Diagona dements of o PW) PS™ (W)
1 0 3,389 3,088 k—k cY Ccvc! CDC' o(CDCY 0050  0.23999 0.24310
2 40 3429 3,088 1-2 —-40 6,178 6,176 647 0025  0.15999 0.16302
3 80 3469 3,088 1-3 -80 6,183 6,176 649 0010 009181 0.09458
4 120 3509 3,088 1-4 -120 6,189 6,176 649 W : 562182 5 :1.2905
Table4.8
Simulation Results RBD, B = (0, 80, 160, 240)t
Subsamples Contrasts Wald gtetigtic
kK By Yi dy Diagonal dements of o PW) PS™ (W)
1 0 3,390 3,001 k—K cY cvct cDc' o(cDCY 0050 077340 0.77712
2 80 3470 3,090 1-2 -80 6,204 6,180 648 0025 068135 0.68789
3 160 3550 3,090 1-3 —160 6,210 6,181 648 0010 055796 056701
4 240 3630 3,090 1-4 —240 6,214 6,181 648 W : 13.48594 5:5.1331
Table5.1
Design-based Wald Statistic, CRD
Subsamples Contrasts Wald dtatistic
K By Vi k—k’ Ve~ % Adct+de W df p-value
1 0 3414 1-2 —124 164.915 24740 3 0.480
2 80 3538 1-3 -182 162,542
3 160 359% 1-4 — 249 164.782
4 240 3,663
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Table5b.2
Design-based Regression, CRD
Source Coefficient Std. ar. Wald gtetistic df p—vaue
treatment 2.907 3 0.4062
treatment 1 —182.14 177.60
treatment 2 —58.36 175.56
trestment 4 66.79 170.46
congtant 3,596.47 194.75
Tableb.3
Standard ANOV A, CRD
kK Be W Contrast ANOVA
1 0 8021 k-k y,-y,  Source df MS F  p-vaue
2 80 8094 1-2 -73 Betweentreatments 3 14,432,816 0.14 0.9376
3 160 7955 1-3 66 Residua 3,776 104,924,668
4 240 8242 1-4 -221 Totd 3,779
Table6.1
Design-based Wald Statistic, RBD
Subsamples Contrasts Wald gtatigtic
kK B Ve k=K  $-% de+dy W df p-vaue
1 0 33% 1-2 -25 81.247 9.93011 3 0.0192
2 80 3420 1-3 -120 80.697
3 160 3515 1-4 -231 82.383
4 240 3,626
Table6.2
Design-based Regression, RBD
Source Coefficient Std.er. Wald stetigtic df p—vaue
Block
Block 2 -17,068.28 2,556.46
Block 3 —21,999.39 2,540.98
Treatment 18.4212 3 0.00036
Treatment 1 -211.51 74.84
Treatment 2 —246.78 60.05
Treatment 3 -97.91 73.39
Congtant 23,589.64 2543.25
Table6.3
Standard ANOV A, RBD
K Bx Vi Contrast ANOVA
1 0 8815 k-k' V¥, -V, Source df MS F  p-vdue
2 80 8150 1-2 665 Between blocks 2 16773 E+11
3 160 8566 1-3 249 Between trestments 3 84,377,227 199 0.1126
4 240 8746 1-4 69 Residua 3,774 42,310,035
Totd 3,779 131,089,505

The standard ANOVA is a naive approach, since it
ignores the dratification, clustering and sdlection of
sampling units using inclusion probabilities that are chosen
proportional to the value of the target parameter. The net
result of ignoring these aspects of the sampling design in the
andysis is a severe over-estimation of the subsample
edtimates as well as the standard errors. Compared to the
other two design-based procedures, this results in larger
p-vaues for the test of treatment effects.
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Another important advantage of the design-based Wald
test compared to the design-based linear regression ap-
proach is that the Wald test always concerns the differences
between the subsample estimates, which facilitate the
interpretation of the results. This property is particularly
important for embedded experiments aimed at the quanti-
fication of trend disruptions in the parameters of a survey
due to adjustments in the survey design. In the case of a
CRD, the linear regresson mode consists of one intercept
parameter and three coefficients for the treatment effects. In
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this particularly simple situation, the coefficients for the
treatment effects are exactly equa to the differences
between the subsample estimates. This property, however,
does't hold for the trestment effects obtained under more
complicated models, asfor example in the case of the RBD.

5. Discussion and Conclusions

In this paper we discuss how the dtatistica methodology
of randomized experiments and random survey sampling
can support the design and andysis of experiments
embedded in ongoing sample surveys. The sample survey
design forms a prior framework for the agpplication of
principles, known from the theory of experimental designs,
like randomization and locd control by means of blocking
on grata, PSU’s, clusters or interviewers. To test hypotheses
about the egtimates of finite populaion parameters
observed under different treatments of the experiment, a
design-based Wald statistic for the analysis of CRD’s and
RBD’s embedded in genera complex sampling designs is
derived using the Horvitz-Thompson estimator and the
generalized regression estimator. The application of
randomized sampling from a finite population in combina
tion with this design-based analysis procedure enables us to
generaize the results of the experiment observed in the
specific sample to the entire survey population.

Since we alow for general complex sampling designs, a
rather complicated expression for the covariance matrix of
the treatment effects with nonzero off-diagond entries is
expected. The derived estimator for this covariance matrix,
however, has a structure as if the sampling units were drawn
with replacement and with unequal selection probabilities.
No second order incluson probabilities or design-cova
riances between the treatment effects are required, which
smplifies the analysis considerably. For example, in the
case of smple random sampling without replacement this
result entails that the finite population correction factor
should be disregarded in estimating the variance of
contrasts. Asaresult aWald statistic, derived from adesign-
based perspective under general complex sampling designs,
is obtained that ill has the appedling relaively simple
structure of standard model-based analysis procedures.

For CRD’s and RBD’s embedded in a self-weighted
sampling design anadyzed with the extended Horvitz-
Thompson egtimator and a pooled variance estimator, the
Wald datistic coincides with the F-statistic of an
ANOVA for the one-way and two-way layouts. For the
andysis of the embedded two-trestment experiment, a
design-based version of the t—statistic can be derived as a
special case of the Wald ddtistic. Expressions and more
details about this dedgn-based t—statistic and its
relationship with Welch's t—statistic and the standard
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t—statistic can be found in Vanden Brakel and Renssen
(1998), Van den Brakd (2001) or Van den Brakd and Van
Berkel (2002).

The analysis procedure proposed in this paper is
implemented in a software package, caled X—tool. Thistool
will become available as a component of the Blaise survey
processing software package, developed by Statistics
Netherlands.

Appendix
Properties of therandomization vectors p,,

For CRD’sand RBD’ s the randomization vectors p;, are
defined by (14) and (15). As a consequence of the random-
ization mechanism of the experimental design, the vectors
p;, are random with the following conditional probability
mass functions. For aCRD we have

n, n n
P pik:_rklsj:_k and P(py =0[s)=1-—¢.
M, n, n,
For an RBD we have
n;, Mji Nk
Plpy= rels; |=—— and P(py =0]s;)=1-—.
ik nj, njs

Properties of these vectors are derived for an RBD.
Properties for a CRD follow as a special, since a CRD can
be considered as an RBD with one block. Let w. pr. denote
“with probability”.

t_
PikPik =
2
n; e
Polrre w.opr.: J if ies,
Nik i+
Ny
0] w. pr.: 1-
n,
to_
PikPix =
n. n o
P Prre w.opr: O if ies,
Ny Ny
jk K
O w. pr.: 1
t
PikPix
n.. n n. n,. . .
LTy owopr: I _if jes;,i’es,
Ny Ny n;, (-1
n, N . . ,
O w. pr. 1=t if jes,, i'es;
nj+ (nj+ _1)

. Ny N _
e oweoprs o 20 s, ies,
N Ny iy Ny

n, N, . )

0 w. pr..  1-—LIC if jes,, i'es;

nj+ i+
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€ _
PiPix =
i (N -1
n. n, (N, — e . .
Ly oweopre 2 e ies,
r]jk nj+ (nj+ _l)
n, (n, -0 . )
o) w. pr.. 1= i jes ies,
n + (nj+ _1)
n.n., N, N . . .
LTt oweopr: X i jes ies;
Ny Ny N, Ny,
n, n e . .
0 w. pr.. 1-—2TEif jes i'es;
nj+ i+

The expectation of p, with respect to the experimental
designisgiven by:

E.(p,)=P|p D (D

ik |k njk k njk
The following covariances with respect to the experimental
design can be derived:

+P(py =0)0=r,. (42

(n'+ _njk) t

Cov(Pix Pii) = ———=1, Ty 43
Ny
CoV, (P Pix) = =Ty ¢ (44)
1 t . H N4
—rkrk, if ies; and i'es;
CoV,(PyPir) = (-9
o) if ies; and i'es; (45)
Cov, (Pix Pix)
n. —n.
Jy Ty 1 e if ies; and i’es,
= Ny (N, -1
o] if ies; and i’es; (46)

Proof of formula (23)

Under the stated condition that a constant H—vector a
exists such that a'x; =1 for al ieU, and conditiona on
the redization of u,i=1...,N, according to super-
population modd (16), it follows that Bk in (18) can be
evaluated as

Em(Bk)zEm(z Xi);iJ Z Xi)gk

=1 @ =1 O
_Ez X(l));lJ Z Xl(ul +WI)+aBk
=b+d+af,, (47)

where b denotes the regression coefficients defined by (17)
and d denotes the regresson coefficients from the
regression function of the interviewer effects on the
auxiliary veriables x;. From result (47) it follows that
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B'x, =j(b'x, +d'x;)+B. Snce Cj=0 and from
measurement error model (1) and linear regresson model
(16) it follows that

C(y; -B'%) =C(ju, +jy, +B+¢ —j(b' +d')x, —p)
=Cg, QED.

Proof of formula (26) for an RBD

First an expression for Cove(CﬁHT|m, s) is derived. Let
e=(e,...,6¢) denote a K-vector with eements
&« = Yi —bix,. Consequently, e =y, —B'x;. Note that
E E Cove(CE T|m s) = CE,E.Cov,(E,; |m,s)C" with

=(Epyrs---» Eg.pyr)'- Futhermore note that

- n., t t n, t

E Pu(yi —B'X;) Pi&

Ecur = el ——1o =) K 48
T |Z:l: [ TN |Z:1: N “9

Usng (43) and (46), the diagona eements of
Cov,(E,; |m,s) can beelaborated as

b e
) QN Cove(pyc i IM9)

:i i1 T i
a3 +z z e(p|k1p|k|ms)_N

i=L izi=1 T
N, N & ~
J ( 1) n]k lz—l: {TC N n]+ |Z—1:
=; ) i} ) (49)
__ M ¥ _
(n, -9 ,le {n N n;, ,le J

Usng (44) and (45), the off-diagona elements of
Cov,(E,; |m,s) can beelaborated as

CoVe (B rs Eyspr I M, S)

o3 B S B j

=1 i'=1

nj, et

Z ' CoV, (P Pir | M, S)
N

Sl xS

i=1 i"zi=1 |N |
:i_ n1+§ak_inz'+:k
= (h,-DF (mN n,TmN
| 1 D e,
{ak = ek J (50)
s T
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The results (49) and (50) can be written in matrix notation;

Cove(ﬁHT |m;s)

n

J ' 1 &y, —Bx,
=D- = i i
z 1|1( Nn z N, J

I’]

=1 n j+ i=1
Yi—BiX inzﬁ*‘ yr —Bx
N1 n,ia N

where D denotesa K x K diagonal matrix with elements

Zy|k bLX J .

J+ i'=1

J
d.=>

Ny Yik —PeX;.
o n, -1 njk ) an
According to (23) it follows that
Cove(CﬁHT [m,s)

Jn, & [ Ceg & Ce,
—CcDC! - i+ =
12:; 12 {Nn z ]

n

j+ T Ti=l j+ |—1
t
Cg, 1 & Cs;
R o NG
[Nni nthnJ

The final part of the proof is to take the expectation of
Cov,(CE,; | m,s) with respect to the sampling design and
the measurement error model. The proof is given for RBD's
where PSU’s are block variables. In a two-stage sampling
scheme, J blocks or PSU’s are drawn from a finite popu-
Iation of J, blocks with first order inclusion probabilities
n W|th|n each PSU, n;, SSU'sare drawn in the second
stage W|th first and second order inclusion probahilities n,l i
and Tl j- The first order inclusion probabilities of the

individualsin the ssmpleare m, = |}, . Furthermore, let

denote the population mean of the measurement errors of
theindividuasof block j. Then

denotes the Horvitz-Thompson estimator for A ;- Now we
have

39

$¥(on 1ga)s 1)
=1 i=l N 7. NTC NTCi n. - NTCi,

i ]+ i'=1 j+ =1

t
1 Nj+ n+8 _ n+8 _
n_zz [N]nlll _AJJ{NJnlll _Aij
= N il _ (52)

Let E, denote the expectation with respect to the first
stage of the sampling design and E, the expectation
with respect to the second stage of the sampling design.
Taking the expectation with respect to the measurement
error model and the sampling design of the first part of
(52) and using model assumption (3) leads to

t

J 1 N+ n 1 & —_

EEE S =[5> =y
m-=s s, J_l(n]J n]2+. (NJTE'“ J[Njnllj J

2
J (1 1 (N n sgg _ _
-EE - ]+||_A_At_
m SIZ[TEIJJ [z N-ZTC“ ] JJ

-1 N Ui Ny

=|;N]22 [njﬁ 4}2 : (53)

T NG N = | Ty

S
=

Notethat E, (A, —4,)(A, -4,)" in (52) equals the design
variance of A; with respect to the second stage of the
sampling design in block j. Taking the expectation with
respect to the measurement error model and the sampling
design of the second pat of (52) and using model
assumption (3) leadsto

2
1 145 <) =1\
EnEsE, a[nj} E(AJ _Ai)(Ai _Al)
~En—i3t 3l - S
1 Y 1
=ﬁ2 - Z (54)
my NT i

With results (52), (53) and (54) we can elaborate the second
term on theright hand side of the equal sign of (51) as

J n. nj,
E. E It -—
" S; n, —1Z Nn n, ,Z_;
= Mjs i+
n;, , N ) t
Co 1% Ce 2%2 cz,c_ )
Nm n, T Nm N“=Z m
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Findly, it follows from (51) and (55) that
EmESCove(CﬁHT |m,s) =
N CcXY C

i=1 i

E,E.CDC' —% QED.

The derivation for an RBD where sirata are block
variables follows directly as a specia case from an RBD
where PSU's are block variables with n =1, mj, =,
miy; =T and J=J,.The proof for an RBD where
clusters are block variables follows directly as a specia case
from an RBD where PSU’s are block variables with mj; =1
and mj; =1. A

The expectation of Cov,(CE,;|m,s) with respect to
the sampling design and the measurement error model for
an RBD where interviewers are the block variables does not
follow as a specid case from an RBD where PSU'’s are
block variables. Since the block varigbles are not directly
linked with the sampling design, the blocks should be
considered as domains where the block size n;, israndom
with respect to the sampling design. The derivation follows
the same steps as in the proof for blocking on PSU’s and is
given by Van den Brakd (2001).

Proof of formula (32)
Matrix D can be partitioned as follows:

5% )
0 D.

According to Bartlett's identity (Morisson 1990, chapter 2)
it follows that:

cbcYHt=(d,jj' +D.)* =D;* —————D.%jj'Dt
( ) =(dyjj ) trace(® ) i
From thisresult it follows that
c'(cbctyic=ciric-— . cBjjtbiic
trace(D™)
—bt- 1B (56)
trace(D™)

Inserting (56) into (31) leadsto (32), QED.
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Domain Estimatorsfor the [tem Count Technique

Takahiro Tsuchiya*®

Abstract

The item count technique, which is an indirect questioning technique, was devised to estimate the proportion of people for
whom a sensitive key item holds true. This is achieved by having respondents report the number of descriptive phrases,

from alist of severd phrases, that they believe apply to themselves. The list for half the sample includes the key item, and
thelist for the other half does not include the key item. The difference in mean number of selected phrasesis an estimator of
the proportion. In this article, we propose two new methods, referred to as the cross-based method and the double cross-
based method, by which proportions in subgroups or domains are estimated based on the data obtained via the item count
technique. In order to assess the precision of the proposed methods, we conducted simulation experiments using data
obtained from a survey of the Japanese national character. The results illustrate that the double cross-based method is much
more accurate than the traditional stratified method, and islesslikely to produceillogica estimates.

Key Words: Indirect questioning techniques; Item count technique; Domain estimators; Survey of Japanese national

character.

1. Introduction

1.1 Indirect Questioning Techniques

Suppose that a population U is divided into two sub-
populations U, and U 7, where U, isaset of elements
having an dtribute T, and U, is a complement of U .
One purpose of socid surveys is to  edimae
n=Y =P(Y =1), where

1 ifkeUq,
10 otherwise

and P(-) denotes the proportion of units having a particular
value of the variable. For example, when T is “supporting
the present cabinet,” w indicates the cabinet support rate, and
when T is “using a certain illega drug,” m denotes the
prevalence rate of drug use.

In a direct questioning technique, researchers ask
respondents “Do you belong to U, ?,” and directly obtain
theindicator value y; as“yes’ or “no” (Cochran 1977, page
50). When every respondent has an equal inclusion proba-
bility, asample mean y serves as one estimator of 7.

On the other hand, some indirect questioning techniques,
including the randomized response technique (Warner
1965), the nominative technique (Miller 1985), the item
count technique (Droitcour, Caspar, Hubbard, Pardey,
Visscher and Ezzati 1991), and the three-card technique
(Droitcour, Larson and Scheuren 2001), are devised because
some respondents tend to evade sensitive questions, such as
those concerning highly private matters, socially unaccepted
or deviant behaviors or illega acts. The essentia feature of

indirect techniques is that instead of a direct observation of
Y, another variable X =g(Y,V), which is some sort of
function of Y and, if necessary, of other random variablesV,
is observed 0 that respondents fed that their true Y-vaues
are not revealed. While this feature is expected to derive a
truthful answer from evasve respondents, both the
questioning and the estimation procedures are rather
complicated compared to the direct questioning technique
partly because the function g(-) sometimes includes some
randomization processes. We shdl outline two indirect
techniques below.

The randomized response is the most popular among the
indirect techniques, and various modifications have been
proposed (Abul-Ela, Greenberg and Horvitz 1967; Warner
1971; Chaudhuri and Mukerjee 1988; Greenberg, Abul-Ela,
Simmons and Horvitz 1969; Takahas and Sakasegawa
1977). Although the randomized response is not the topic of
this article, we shal briefly outline Warner's original
procedure here for reference, because this technique will be
smulated in alater section.

1. Prepare two types of questionnaires. In question-
naire A, respondents are asked “Do you belong to
Uy ?,” and in questionnaire B, respondents are
asked “Do you belong to U 7, ?”

2. Let p(#0.5) be the predetermined probability.
Each respondent selects questionnaire A or B with
probabilities p or 1- p respectively, but no one
other than the respondent knows which
guestionnaire is selected.
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3. Suppose Xisan indicator variable whose value is 1 if
the responseis “yes’ or 0 if the responseis “no.” The
egtimator of & is given by

p—-1+X

= ,
2p-1

@
where X isasample mean of X.

Since the researchers have no information regarding the
type of questionnaire selected by each respondent, more
respondents are expected to give truthful answers than they
would if asked direct questions.

The item count technique, which is the subject of this
article, isnot as popular despite its ssmplicity. The technique
is dso effective when posing sensitive questions, because
respondents are asked not to answer sendtive questions
directly but to merely report the number of items that hold
true with them. The following are the processes of the item
count technique:

1. Prepare the key item T, which is the primary focus
of the study, and G other non-key items E,, ..., Eg
For example, T is “using a certain illegal drug” as
mentioned above, and E; is some sort of non-
sensitive description such as“owning abicycle.”

2. Prepare two types of questionnaires, A and B. In
guestionnaire A, respondents are asked to answer
the number C* of items that are true with respect
to themselves among G non-key items. In
questionnaire B, respondents are asked to answer
the number C® of items that are true with respect
to themselves out of G+1 items, including the key
itemT.

Table 1 lists examples of item lists. Our am is to
estimate the proportion of people who use a certain
illegal drug. The key item is “using a certain illegal
drug” in the questionnaire B and the other four items
are non-key items. Except when a response to the
questionnaire B is C® =0 or C® =5, researchers
cannot detect as to which items hold true with the
respondent. For example, a respondent will reply that
four items in the questionnaire B are true, but we
cannot be sure that the respondent uses the drug at all.
Hence, it is expected that more respondents using an
illegal drug will report truthful answers in such a
scenario than when asked adirect question.

3. Divide a totd sample into two subgroups, A and B,
randomly of size n* and n® so that each question-
naireisassigned to a corresponding subgroup.
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Tablel
Examples of Item Lists
Questionnaire A Questionnaire B
How many of the following hold true  How many of the following hold
for you? true for you?

—owning abicycle

— having travelled abroad
—having caled an ambulance
—owning asummer villa

—owning abicycle

— having travelled abroad
—having called an ambulance
—using acertainillega drug
—owning asummer villa

4. The estimator of n is given by
#=C®-C*, )

where C* and C® are the estimated means of C*
and C® respectively. The justification of (2) is
explained in section 2.1. When every unit in the

sample has an equa inclusion probability, & can be
written as

N

II
‘H’Mﬁ’
3
mﬂm

where n? and n? are the number of respondents
whose answers are C* =c¢ and C® =c, respectively.
Moreover, when an auxiliary variable Z is available
and its distribution P(Z =2z)=m, in the population
is known, for example from a census, poststrati-
fication is often used to adjust the sample distribution
of Z to the population. That is, the poststratified
estimator of « is given by

ZV "Z—Z ZV

c=0
_G+l mz B z A (4)
=> cy —Bncz—z > —ng,

c=0 z n.z c=0 z n.z

is the number of respondents for each
Ch=cand Z=z2

G
=>'n5,n"=
c=0

m,n*

A LA
Zn-Z’VZ: A
z

n;

and n2,n%,n®, and v are defined in analogous ways.

One practical merit of the item count technique is that it
does not demand any randomization devices, which are
required for the randomized response technique. It is not the
respondent but a researcher who selects the questionnaire to
be answered. Hence, the item count technique is easly
implemented via any sdf-administered or telephone
surveys. A more elaborate comparison between the
randomized response and the item count technique is found
in Hubbard, Casper and Lesder (1989).
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The questionnaire A is introduced to obtain the distri-
bution of the number of non-key items. That is, respondents
to the questionnaire A do not answer the senditive question.
Therefore, it is possible to increase the precison of the
edimator using the double-lis verson of item count
(Droitcour et al. 1991), which exchanges the roles between
the two subgroups. However, we limit our argument in this
aticle to a single-list verson, because the extenson of
estimators to the double-list version is straightforward.

1.2 Purposeof thisArticle

Thus far, we have focused on the parameter
n=Y=P(Y=1) of a totd population. However, esti-
mators in subpopulations or domains (Sérndal, Swesson and
Wretman 1992 page 5) are often required, i.e, either a
conditiona proportion P(Y =1|Z = z) or ajoint proportion
P(Y =1 Z =2 must be estimated, where a population is
divided into severad domains by the Z-value. We refer to
the variable Z as the domain variable in this article. The
domain variables often used are demographic characteristics
such as gender or age. For example, government agencies
would like to know the proportion of people who use a
certainillega drug at each age group. Even though the post-
dratified estimator 7t,g in (4) uses the domain variable Z, its
am is an esimation of P(Y =1) in the entire population.
Our am in this article is to obtain separate estimations of
P(Y =1|Z = z) within each domain.

One smple estimation method is asfollows:

1. Pog-dratify the sample into strata or domains
based on the Z-value.

2. In each stratum or domain, separately determine
p(Y =1]Z=2) usng (1) or (2), where p() isa
sample estimate of P(-).

3. If necessary, edimate p(Y =1 Z=2) by multi-
plying a known domain proportion, P(Z = z), or
an estimated domain proportion, p(Z = z).

The above method is referred to throughout this article as a
gratified method because estimates are obtained separately
in each stratum or domain. Although Rao (2003) refers to
the above method as a direct estimate, we have avoided the
use of the term “direct” in order to avoid confusion with the
term “direct questioning technique.”

An advantage of the stratified method is that this method
is applicable to any indirect questioning technique,
including the randomized response and item count
techniques. The U.S. General Accounting Office (1999)
adopts the dratified method to estimate domains under the
three-card technique. However, one of the serious problems
of the dratified method is that it often produces illogical
estimates, especially negative estimates, in the case of the
randomized response and the item count, as explained later
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in this article. This is mainly because the reduction of the
sample size in each stratum increases the standard errors of
the estimators (Lesder and O'Rellly 1997). For example,
Droitcour et al. (1991, page 206) “calculated estimates
separately for the three risk dratd” and obtained negative
prevalence rate estimates of drug use.

In the case of the randomized response, there is little
possibility that domain estimators other than the stratified
method are developed because information concerning the
type of questionnaire selected by individua respondents is
unavalable. In contragt, in the item count technique, the
guestionnaire answered by each respondent is known.
Therefore, the precison of the domain estimators is
expected to increase when auxiliary information is used,
specifically contingency tables between Zand C* or C®.

In this article, we propose new domain estimators for the
item count technique, which are referred to as the cross-
based method and the double cross-based method. In
addition, we will illustrate the fact that the new estimators
are more efficient than the traditiona stratified method by
smulating the item count technique using data obtained
from the survey of the Japanese national character
concerning the dgnificant attributes of the Japanese
character.

2. Domain Egtimatorsfor theltem
Count Technique

2.1 Stratified Method

Here, we reformulate the dratified method. Let us
assume that the following equations hold true for each value
of candz

Assumption 1.
P(CP=cjz=2=P(C"=c,Y=0Z=2)
+P(C*"=c-1Y=1Z=2),
P(C*=G+1Y=0Z=2)=0.

These assumptions imply that the difference in the
distribution between C* and C® depends solely on Y.
Question effects, including order effects and context effects
(Schuman and Presser 1981) are not considered.

We have the following result based on these
assumptions.
Sratified Method.
G+1
P(Y=1Z=2)=) cP(C®=clZ=2)
c=0
G
- cP(C"=clz=2) )
c=0
= (_:ZB - (_:ZA’ (6)
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where C* and C,? arethe domain meansof C* and C®.

Derivation.
G+1

> cP(CP=clz=2)
c=0
G+1 G+1
=Y cP(C"=c,Y=0|Z=2) +)_ cP(C"=c-1Y=1|Z=2)

c=0 c=0

_Z cP(C*=c,Y=0|Z=2) +Z (c+)P(C*=c,Y=1Z=2)

=> (P(C*=c,Y=0Z=2)+P(C"=c,Y=1Z=2)}

c=0

+Z P(C*=c,Y=1Z=2)

G
=Y cP(C*=c|Zz=2)+P(Y=1Z =2).

c=0
Trangposing the firgt term to the left-hand side yieds the
gratified method (5).

Theegtimator p(Y =1|Z = z) isobtained by subgtituting
domain means C,* and C? with their estimators, C,* and
Cl.

p(Y =1|Z=2)=C7 -C. ™

When the inclusion probabilities are equal for dl unitsin the
sample, the estimator of P(Y =1|Z = z) iswritten as

G+l

p(Y=1|Z=2) = ZCCZ—ZC

.z c=0 4

where n4,n2,n2, and n° are defined in the section 1.1.
The equations (2) and (3) for the entire population are
specia casesof (7) and (8).

One merit of the stratified method is that the variance

edtimator of p(Y =1|Z = z) iseasily obtained by
Var (p(Y =1|Z=2)) = Var (C2) + Var (CA). ©)

On the other hand, as noted in the previous section, the
reduction of sample size in each stratum increases estimated
variances in (9). Further, the margina estimator p(Y =1)
obtained by using (8) does not correspond to that obtained
directly by (3), unless n2=n? for dl z That is, when

p(Z = z) isnot known, its estimator is given by

PZ=2)=(n7+n3)/(n"+n®)

®)

and
> p(Y=1Z=2)p(Z=2)
:Z né+n-3 GZHC_CBZ §C£
> n*+n® |5 n & ond
G+1 B G A
Z ¢ > e =1. (10)
c=0 c=0 n
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When the domain proportion p(Z =2z)=m, is available,
the margina estimator corresponds to the poststratified
estimator (4).

> p(Y=1Z=2)P(Z=2)

G+1 G r]A
-¥m3 o3 ol
-z c=0 nz
= Tpg.
These reaults indicate that we should use a pogtsratified
esimator 7t,g With the domain estimators if we use the
sratified method.

2.2 Cross-based Method

In the dratified method, a total sample is divided into
dgrata for the purpose of direct estimation of
P(Y=1]Z=2), which causes sample sze reduction.
Hence, in the cross-based method proposed in this section,
the joint proportion P(Y =1 Z=12) is estimated first in
order to use the entire sample, and the conditional
proportion is subsequently obtained by

iy bY=1Z=2)
p(Y—1|Z—Z)——p(Z=Z)
_y_bh¥=17=2
o p(¥Y=1z=2= PZ=2)

The term * cross-based method' is used because this method
uses crosstabulations P(Z = z|C® = ¢), asshownin (19).

For the crossbased method, we assume that the
following egquations hold for each value of c.

Assumption 2.

P(C®=c+1,Y=1)=P(C"*=c,Y=1), (11)
P(C®=0,Y=1)=P(C*"=-1Y=1)=0, (12
P(C®=c,Y=0)=P(C"=c,Y =0). (13

These assumptions also imply that the difference in the
distribution between C* and C® dependsonly on Y.

We have the following result based on these
assumptions.
Cross-based Method.
G+l
P(Y=1Z=2)=) P(Z=2|C®=0)Q,;, (14

c=1

where
Q. =ZC:{P(CA =d)-P(C® =d)}.
d=0

In addition, we assume that P(Z=2z|C® =c, Y=1) =
P(Z=2z|C® =c) for every ¢ > 0. This assumption
would be valid to some degree when both the key and non-
key items describe the same type of stigmatizing behavior.
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Derivation.
Based on the assumptions, we have

P(C®=c)=P(C®=c,Y=1)+P(C®=c,Y=0)
=P(C*=c-1Y=1)+P(C"*=c,Y=0). (15

The following equation holds for any c.
P(C*=c,Y=0)=P(C"=c)-P(C*=c,Y=1). (16
Hence, subgtituting (16) in (15) gives

P(C® =c)=P(C"*=c-1 Y=1)
+{P(C*=c)-P(C*=c,Y=1}. (17)

Summing (17) over ¢ up to some g, we abtain
Zg: P(C® =c¢) =Zg: P(C*=c-1,Y=])
c=0 c=0

+Zg:{P(cA: c)-P(C*=c,Y=1}

c=0
= zg: P(C*=c)-P(C*=g,Y=1).

c=0

By transposing the terms, we define Q..

Q. =Y {P(C*=d)- P(C® =d)}
d=0

=P(C*=c,Y=1
=P(C®=c+1Y=1). (18
Here, the joint proportion P(Y=1,Z=2) s
decomposed as

G+l

P(Y=1Z=2)=) P(Z=2|C®=c)P(C°=c,Y=1). (19)

Substituting the equation (18) and the assumption (12) in
(19) yidds the cross-based method.

The joint edimaor P(Y=1 Z=2) is obtaned by
subgtituting each term of (14) for its estimators. When the
sampleis self-weighting, the etimator is given by

P(Y=12=2)= (Bzﬂnzi(nf BJ (20)

d=o \ N

where
no=> nj =3 nd.
z 4

The conditiona estimator p(Y =1|Z =2z) is obtained by
dividing p(Y=1Z=2 by the domain proportions
P(Z = 2) orther edimators p(Z = 2).

As noted above, the main feature of the cross-based
method isthat p(Y =1, Z=2) isfirst estimated using the
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entire sample. Hence, the variance of p(Y =1|Z=2) for
the cross-based method is expected to be smaler than that
of p(Y=1Z=2 for the dratified method. Moreover,
negative values will seldom be obtained in the case of the
cross-based method, while the negative values will be often
obtained in the case of the stratified method. Furthermore,
the margina estimator p(Y =1) obtained by summing (20)
isequal to the estimator (3), unless n? =0 for somec:

R Ik ol Lo

z c=1 Ng d=0

c=1 n
G+1 G nA G+l nB
= - 1=y <
CZ:; { dzc nAj [ o nBj}
G+1 nB G A ~
=) c=->cS=1 (21

Of course, when the domain proportions P(Z = z) =m, are
known, we can use them to obtain a poststratified estimator
p(C*=d) of P(C*=d) in Q_, of (14),

PC = d) =3 En,
In this case, ¥, p(Y =1, Z = 2) coincides with the post-
dratified estimator 7pg.

One drawback of the cross-based method is that the
variance of p(Y =1|Z = z) isamost impossible to estimate
agebraicdly. Hence, some resampling methods such as the
jacknife or bootstrap would be necessary. Additionally,
sinceit isimpossible to determine the more efficient method
between the dtratified method and the cross-based method,
smulation studies shall be conducted in alater section.

2.3 Double Cross-based M ethod

Before proceeding to the smulation study, we suggest a
modified verson of the cross-based method. In equation
(19) of the cross-based method, we use P(Z = z|C® =¢).
In the same way, when P(Z = z|C” =¢) isused, we obtain

P(Y=],Z=z)=§ P(Z =z|C*=c)P(C*=c,Y =1)

= i P(Z=z|C*=0)Q.. (22)

Hence, a double crossbased method is obtained by
combining (14) and (22) asfollows:

PY=1Z=2=)

c=0

{ WAP(Z = z|C* =¢)

, (23
+WPP(Z =z|CB =c+ l)}QC )
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where w* and w® are the non-negative weights for each
subgroup, the sum of which isequal to one.

The following equation also holds for the double cross-
based method of any w" and w®, unless n=0 or
n? =0 for somec.

z pY=L,Z=2)=1. (24

3. Numerical Experiments

3.1 DataSet

In order to compare the precision of the estimators, we
conducted simulation experiments using data obtained from
the survey of the Japanese nationa character (Sakamoto,
Tsuchiya, Nakamura, Maeda and Fouse 2000). Although
the respondents were sdected via a dratified two-stage
sampling from Japanese aged 20 and over, we neglect the
sampling design because the collected sample of N =1,339
is treated as the “true’ population in this experiment. Table
2 lists the results of a question concerning the significant
attributes of the Jgpanese character. Respondents were
asked in a facetoface interview to choose as many
adjectives from among ten dternatives as they thought
described the Japanese character.

Table2
Significant Attributes of Japanese character

N=1339
(Hand card) Which of the following adjectives do you think describes
the character of the Japanese people? Choose as many asyou like.

1 Rationd 18% 6 Kind 42%
2 Diligent 71% 7 Origina 7%
3 Free 13% 8 Pdlite 50%
4 Open, frank 14% 9 Cheaful 8%
5 Pesgent 51% 10 Idedigtic 23%

The form of this question is different from that of the
item count technique. In the item count technique, the
respondent is asked to “ answer the number of adjectives.” In
contrast, in this survey the respondent is asked to “circle as
many adjectives you fedl are appropriate.” In addition, the
ten items are not very sensitive, hence the respondents
should not hesitate during the selection. However, since the
real contingency table between each of the ten items and
another variable Z is obtained, we can evauate the
performance of estimators through a pseudo item count
procedure.

We took each of the following three items as the key
item Y, where Y =1 impliesthat the item was selected.

- 7 Origina (w isthe least among the ten items)
- 8 Polite (w isjust 50%)
- 2 Diligent ( isthelargest among the ten items)
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Three combinations of non-key items are used, as listed
in Table 3. Combination 1 comprises two items with low
proportions, while combination 2 comprises two items with
high proportions. Combination 3 is the case with the
maximum number of non-key items.

Table3
Three Combinations of Non-key Items

Non-key items
9 Chearful (8%0)
3Free (13%)

5 Persgtent (51%)
6 Kind (42%)
Nineitems other than the key item

Combination 1 (G = 2):
Combination 2 (G = 2):

Combination 3(G=9):

We used either gender or age as the domain varigble Z.
Gender is either mae or femae, and the age categories are
113 20 _ 29'11 H30 _ 39’” H4O _ 49,11 “50 _ 59,11 H60 _ 69”, a.]d
“70 and over.”

3.2 Direct Questioning Versus Item Count
Technique

3.2.1 Simulation Methods

Firg, we compare the standard errors between the direct
gquestioning and the item count techniques. In this
experiment, we attempted one combination of “7 Original”
(key item), combination 3 (non-key items), and gender
(domain variable). The contingency table based on the entire
sampleof N =1,339 islisted in Table 4.

Table4
A Contingency Table Between “7 Origina” and Gender
7 Qrigina
Y=1 Y=0 Total
Mae 46 (75) 569 (925) 615 (100.0)
Femde 51 (700 673 (930) 724 (100.0)
Total 97 (72 1242 (928 1,339 (100.0)

The simulation was conducted through the following
procedures:

Stepl. Suppose the total sample of N =1,339 to be a
population.

Step2. Draw a subsample S of sze Nf where f is a
sampling fraction with a smple random sampling

without replacement.

As the simulated result of the direct questioning
method, compute the proportion directly,
p(Y =1]Z=mae) and p(Y =1|Z =female).

Divide the subsample S into two groups S* and
SP of size n® and n® that are not necessarily of
equal size. Count the number C* of selected non-
key items for each respondent in S*. Also, count
the number C® of sdected items including both
the key item and the non-key itemsin S°.

Step 3.

Step 4.



Survey Methodology, June 2005

Sep 5. Asthe smulated result of the item count technique,

compute p(Y=1l|Z=mae) p(Y=1l|Z=female)
and via the three egtimation methods, dratified
method, cross-based method, and double cross-
based method. In the double cross-based method, we
let w*=n”/(n*+n®) and w® =n®/(n” +n®).

Sep 6. Welet f =0.1 in step 2 and perform steps 2 to 5

for 2,000 iterations. Cdculate the means
E;. Es, Ec. and E, and the standard deviations
S, S5, E., and S, of each estimation
method to approximate the expectations and the
gandard erors of the egtimators, where the
subscripts D, S C, and W, indicate the direct
questioning method, the dratified method, the
cross-based method, and the double cross-based
method, respectively. In the same way, we let
f=02 and peform seps 2 to 5 for 2,000
iterations, and so on up to and including f =0.9.

Expectations (Male)
0.10 ' ' ' '
Direct Questioning
- - — - Stratified
0.09 | — - — - (Cross-based
i Double Cross-based
0.08
0.07
0.06 |
0.05 . . ; ; A :
01 02 03 04 05 06 07 08 09
Sampling fractions
Expectations (Female)
0.10
0.09 |
0.08 |
\‘ o T 5 7y
T e Ll
007 | Feivpt e et —
0.06 |
0.05 i

01 02 03 04 05 06 07 08 09
Sampling fractions

3.2.2 Simulation Results

Figure 1 shows the approximated expectations and
sandard errors of the estimators. The horizontal axes
indicate sampling fraction f. In both the cases, mae and
female, the approximated expectations of E, are stable at
every f-value while Eg, E., and E, of the item count
technique fluctuate irregularly. This is because randomness
is introduced twice under the item count, i.e, in the
sampling phase and in the divison phase, whereas
randomness is introduced only in the sampling phase under
the direct questioning scenario. Evenif f =1, the estimator
under the item count technique has a certain amount of
variance due to the randomness at the division phase. Asthe
range of fluctuation was negligible compared to the
magnitude of the standard errors, which are referred to
below, we concluded that the number of repetition was

sufficient.
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0.0

0.4
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Standard Errors (Male)

—
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Figurel. Approximated Expectations and Standard Errors of Estimators.
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The standard errors, SE,, of the direct questioning
method is considerably small compared to those of the item
count. In the case of the item count, standard errors do not
converge to zero even if f =1. As noted above, this is
because the randomness is aso introduced in the division
phase. The standard errors of the dratified method are
obvioudly larger than those of the two cross-based methods.
The lines indicating the results for the cross-based method
and the double cross-based method amost overlap, and
appear to have no outstanding differences.

In order to evaluate the amount of variances or standard
errors of estimators, let us condder the following indices
that are analogous to the design effect (Kish 1965),

$2

Def M1, M2 = $—g:: f
where M, and M, indicate one of the four methods D, S
C, and W. Although we have omitted the detailed results,
roughly summarized, Def. , ranges from 50 (when
f =0.1)to 700 (when f =0.9). That is, even if weusethe
cross-based method, the standard errors of the item count
inflate nearly seven- to twenty-six-fold as compared to the
direct questioning. However, the variance reduction attained
by using the double cross-based method instead of the
sgtratified method ranges from Def,, s = 0.39 (mae) to 0.55
(femde). In other words, the standard errors of the double
cross-based method are reduced to about 62 percent of the
gratified estimate at the minimum, and 74 percent at the
maximum.

3.3 Stratified Versus Cross-based M ethod
3.3.1 Simulation Methods

In the previous section, the precision of the cross-based
and the double cross-based method appeared to be larger
than those of the siratified method. We shall check the
precision of these methods for other combinations of the key
item, the combination of non-key items, and the domain
variable Z by smulation experiments.

In this section, we used all samples asfollows:

Sepl. Compute P(Y =1|Z =2) for each z based on dll
dataof size N =1,339.

Divide the total sample (N =1,339) randomly into
group A and group B of size n® and n® where
N =n"+n®,

Count the number C* of selected non-key items
for each respondent of group A, and count the
number C® of sdected items, including both the
key item and non-key items, in group B.

Step 2.

Step 3.
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Sep 4. Edimate p(Y =1|Z = z) by the stratified method,
the cross-based method, and the double cross-based
method, respectively.

Step5. Compute the chi-squared distance e* between
P(Yy=1Z=2 ad p(Y=1Z=2z) for eaxh
method.

2 :z{p(Y=1|Z= 2) - P(Y =1|Z = 2)}*
z P(Y=12=2)

Step 6. Repeat the above procedure from step 2 through
step 5 for 1,000 iterations. Calculate the means and
the standard deviations of €” for each method.

In addition, we smulated the stratified method under the
randomized response for references via the following
procedure:;

Stepl. Let p be a proportion as described below. Divide
the totd sample (N =1,339) randomly into two
groups. Group A is composed of Np respondents,
and group B iscomposed of N(1— p) respondents.

Let n? be the number of respondents who selected
the key itemand Z =z ingroup A. Let n? bethe
number of respondents who did not select the key
itemand Z =z ingroup B. Let n, be the number
of respondentswith Z = z. Compute

n, ( p-1+(nt+nd)/n,
1,339 2p-1 '

Step 2.

p(Y=12=2)=

Step 3. Cdculate e* employing the same equation as used

in the item count technique.

Repesat the above procedure from step 1 through
step 3 for 1,000 iterations. Calculate the means and
the standard deviations of €” for each method.

Step 4.

Weusad threepvdues, p=0.2, p=0.3, and p=0.4.

3.3.2 Simulation Results

Table 5 and Table 6 list the means and the standard
deviations of 1,000 e’s for the domain variable Z of gender
and age, respectively. A smaller mean of “ e*—vaue’ indi-
cates that the domain estimators are more precise. In some
repetitions, illogicd egtimates p(Y =1|Z=2), which
deviate from the range [0, 1], were obtained. The columns
of the tables denoted by “under” indicate the number of
repetitions when a lesst one of the estimates
p(Y =1]Z = z) was under 0, and “over” indicates that the
estimates were over 1. Ideally, the figures of the columns of
“illogical p” should be 0.
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Table5
Means and Standard Deviations of es and Number of Times Illogical Estimates were Obtained (Domain Variable Z is Gender)

7 Origind (7%) 8 Palite (50%) 2 Diligent (71%)
e?—vaue illogica p e?—vdue illogica p e?—vaue illogical p
mean  (sd.) under  over mean  (sd.) under  over mean  (sd.) under  over

Stratified method

Combination 1 38 (36) 39 0 6 (6) 0 0 4 4 0 0

Combination 2 89 (92 179 0 16 (17) 0 0 10 (11) 0 0

Combination3 341 (330) 457 0 4 (43) 0 0 33 (3 0 7
Cross-based method

Combination 1 18 (24) 1 0 4 (5) 0 0 3 ©) 0 0

Combination 2 45 (65) 11 0 10 (12 0 0 7 8 0 0

Combination 3 163 (239) 186 0 22 (31) 0 0 17 (23 0 1
Double cross-based method

Combination 1 18 (24) 1 0 3 (4 0 0 2 ©) 0 0

Combination 2 45 (65) 31 0 9 (12 0 0 6 ) 0 0

Combination3 163 (240) 177 0 21 (31 0 0 6 (N 0 0
Randomized response

p=02 12 (14) 0 0 3 ©) 0 0 2 @) 0 0

p=03 35 (43) 41 0 8 7 0 0 5 (5) 0 0

p=04 158 (181) 305 0 35 (34 0 0 23 (23 0 3
Note: e” —vaueis multiplied by 10°.

Table6

Means and Standard Deviations of e?s and Number of Times Illogical Estimates were Obtained (Domain Variable Z is age)

7 Origind (7%) 8 Palite (50%) 2 Diligent (71%)
e?—vaue illogica p e?—vdue illogical p e?—vaue illogical p
mean (sd) under  over mean (sd) wunder over mean  (sd.) under  over

Stratified method

Combination 1 375 (226) 609 0 60 (39 0 0 39 (26) 0 0

Combination 2 859 (507) 799 0 152 (91) 0 0 97 (58) 0 18

Combination3 3410  (2,108) 926 1 446  (290) 48 41 333 (217) 9 353
Cross-based method

Combination 1 93 (82 8 0 32 (20) 0 0 28 (16) 0 0

Combination 2 175 (195) 138 0 80 (42) 0 0 59 (33 0 0

Combination 3 536 (733) 273 0 89 (95) 0 0 70 (71) 0 10
Double cross-based method

Combination 1 70 (75) 8 0 13 (13) 0 0 9 (8) 0 0

Combination 2 153 (202 93 0 45 (35) 0 0 31 (23) 0 0

Combination 3 526 (745) 246 0 72 (99 0 0 52 (70) 0 1
Randomized response

p=0.2 158 (101 284 0 25 (14) 0 0 17 (11 0 0

p=03 476 (2949) 720 0 74 (42 0 0 51 (3D 0 2

p=04 2181  (1,348) 945 0 335  (193) 9 9 232 (136) 0 217

Note: e —vaueismultiplied by 10°.

For every combination of the key item, the non-key
items, and the domain variable Z, the means of € of the
double cross-based method are the smallest, and the cross-
based method is the second smallest by a narrow margin.
When nt of the key item islow (*7 Origind”), the number
of non-key items is large (combination 3), and the number
of aternatives of the domain variable Z islarge (age), the
accuracy of the dtratified method decreases gredtly
compared to other combinations.

Moreover, when 1 of the key item is low, negative
edimates are often observed when the stratified method is

used. For example, when combining “7 Origina,”
combination 3 and age, the frequency of observed negeative
estimates is 926 out of 1,000 iterations. When the double
cross-based method is used, the negative estimates are less
likely to be observed.

For randomized response, when the number of
dternatives of the domain variable Z is small (gender), the
accuracy of the estimates seems to be the same as the cross-
based and the double cross-based methods. However, the
mean €’ is somewhat larger than that of the cross-based
method when the domain variable Z has many options (age).

Statistics Canada, Catalogue No. 12-001-XIE
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The randomized response, for which only the dratified
method is available, also suffers from negative estimates,
particularly when rt issmall (*7 Origind™).

4. Concluson

The following results were obtained through smulation
experiments:

—  The cross-based method or the double cross-based
method, which is proposed in this article, should be
used to estimate domain parameters when the data
is obtained via the item count technique. In the first
smulation, the variances of cross-based estimators
were reduced to 39 percent of the variance of the
gretified estimate at the minimum to 55 percent at
the maximum. In the smulation studies, the double
cross-based method made no drastic improvement
in precison as compared to the cross-based
method.

—  Even when the double cross-based method is used,
the standard errors of the domain estimators are
much larger than those of the direct questioning
technique.

The true ==Y =P(Y=1) of a question, to which
respondents evade giving a truthful answer, would be often
small. In addition, an indirect questioning technique is used
in order to ensure protection of privacy. The respondents
fed that their privacy is secured when many non-key items
are included (Hubbard et al. 1989). The smulation studies
show that in such situations, the cross-based method or
double cross-based method is more efficient than the
treditional stratified method.

The domain estimators obtained by the traditiona
gratified method are generdly inconsistent with the
estimator t as shown in (10). Poststratified estimator tpg
by the domain variable addressed is essentia in order to
ensure consstency. Alternatively, we have to divide the
total sample into two subgroups so that the distributions of
their domain variable match in advance. On the contrary,
the domain estimators obtained by the cross-based and the
double cross-based methods are consistent with © as shown
in (21). However, it does not mean that the cross-based
method automatically adjusts the two subgroups so that the
sample digtributions of the domain variable match between
the two subgroups. For the cross-based method, post-
gratification by the domain variables or other demographic
variablesisaso admissible, but not indispensable.

Even when the double cross-based method is used,
negative domain estimates are sometimes observed. It is

Statistics Canada, Catalogue No. 12-001-XIE
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possible to avoid negative estimates by letting a negative
estimate q, of Q. in (23) be zero. However, such an
adjustment produces apositive biasin p(Y =1|Z = 2).

The data of the survey of the Japanese national character,
which were used in the smulation experiments, are neither
sendgitive nor were they obtained via the item count
technique. In the future, the performance of the proposed
method should be assessed by applying it to data obtained
viatheitem count technique.
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Editing Systematic Unity Measure Errors Through Mixture Modelling

Marco Di Zio, Ugo Guarnera and OriettaLuzi *

Abstract

In Official Stetistics, data editing process plays an important role in terms of timeliness, data accuracy, and survey costs.
Techniques introduced to identify and diminate errors from data are essentialy required to consider dl of these aspects
simultaneoudy. Among others, a frequent and pervasive systematic error appearing in surveys collecting numerical data, is
the unity measure error. It highly affects timeliness, data accuracy and costs of the editing and imputation phase. In this
paper we propose a probabilistic formalisation of the problem based on finite mixture models. This setting alows usto ded
with the problem in a multivariate context, and provides also a number of useful diagnostics for prioritising cases to be more
deeply investigated through a clerical review. Prioritising units is important in order to increase data accuracy while
avoiding waste of time due to the follow up of non-redly critical units.

Key Words: Editing; Random error; Systematic error; Selective editing; Model-based cluster analysis.

1. Introduction

Elements determining the quality of an Editing and
Imputation (E& ) process are various and have been widely
discussed in literature (Granquist 1995). We ded with a
particular non-sampling error that highly affects two main
competing quaity dimensions: timeliness and data accura-
cy. Asfar as accuracy is concerned, we adopt the definition
suggested in the Encyclopedia of Statistical Sciences,
(1999): “accuracy concerns the agreement between statistics
and target characterigtics’. A number of factors can cause
inaccuracy aong the overall statistical survey process.
Inaccuracy can be reduced during the E& | phase, which can
be viewed as an “accuracy improvement tool by which
erroneous or highly suspect data are found, and if necessary
corrected (imputed)” (Federd Committee on Statigtical
Methodology 1990).

Due to the complexity of investigated phenomena and
the existence of several types of non-sampling errors the
E&| phase can be a very complex and time consuming task
(Granquist 1996). In the specialised literature a common
error classfication leads to define two different error
typologies: systematic error and random error. The former
relates to errors which go in the same direction and lead to a
bias in datistics, while the latter refers to errors which
spread randomly around zero and affect the variance of
estimates (Encyclopedia of Statistical Sciences 1999). Un-
derstanding nature of errors is not only useful in order to
identify their source and to assess their effects on estimates,
but also to adopt the most appropriate methodology to deal
with them (Di Zio and Luzi 2002). While the Fellegi—Holt
gpproach (Fellegi and Holt 1976) is a well-established
paradigm to deal with random errors, systematic errors are
generaly treated by means of ad hoc solutions (see for

instance Euredit 2003, Vol. 1, Chapter 5). Systemétic errors
are generdly treated before deding with random errors,
particularly when the latter are tackled through automatic
software, like for instance the Generalised Editing and
Imputation System (GEIS) (Kovar, Mac Millan and
Whitridge 1988) and more recently De Waal (2003).

In the family of systematic errors, one that has a high
impact on final estimates and that frequently affects datain
datistical surveys measuring quantitative characteristics
(e.g., business surveys) is the unity measure error times a
constant factor (e.g., 100 or 1,000). This error is due to the
erroneous choice, by some respondents, of the unity
measure in reporting the amount of some questionnaire
items.

As red examples of surveys affected by this type of
eror, we sdected two ISTAT invedtigations. the 1997
Italian Labour Cost Survey (LCS) and the 1999 Italian
Water Survey System (WSS).

The LCS is a periodic sample survey that collects
information on employment, worked hours, wages and
salaries and labour cost on about 12,000 enterprises with
more than 10 employees. In Fgure 1 the logarithm of
Labour Cost (LCOST), Number of Employees
(LEMPLQY), Worked Hours (LWORKEDH) are repre-
sented in a scatter plot matrix. Note that the employment
varidble at this editing stage is error free because of a
preliminary check with respect to information from business
registers (Cirianni, Di Zio, Luzi and Seeber 2000). The
andysis of Figure 1 shows that Labour Cost is affected by
two types of unity measure error (i.e.,, 1 million and 1,000
factor), while Worked Hours exhibits only the 1,000 factor
error. These errors cause the different clusters in Figure 1.
Note that the clusters in the low left corners of each scatter
plot represent non-erroneous data.

1. Marco Di Zio, Ugo Guarnera and Orietta Luzi, Italian National Statistical Institute, Via Cesare Balbo 16, 00184 Roma, Italy.
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Figurel. Multiple scatter plot between total labour cogt,

employees, worked hours (logarithmic scale).

The WSS example will be described in detail in
subsection 4.2 where an gpplication of the method proposed
in this paper for identifying and treating the unity measure
error will be presented.

For the unity measure error, the critica point is the
localisation of items in error rather than their trestment. In
fact, once an item is classified as erroneous, the optimal
treatment is uniquely determined and consigts in a
determinigtic action recovering the origind value through an
inverse action (e.g., division by 1,000) neutralising the error
effect.

The unity measure error is generally tackled through ad
hoc procedures using essentialy graphical representations
of margind or bivariate distributions, and ratio edits. A ratio
edit is a rule stating that the value of a ratio between two
variables must lie within a predefined interval. The interval
bounds are generaly determined through a priori knowledge
or via exploratory data anaysis, possibly using reliable
auxiliary information. For this type of error, ratio edits are
effective when one of the two variables is error free. Fur-
thermore ratio edits alow taking into account only bivariate
relationships between variables and even using interactive
graphical inspection (e.g., scatter plot matrix), no more than
a parwise anaysis can be performed, disregarding more
complex interactions between variables. Findly, we notice
that adopting pairwise analyses implies that variables are to
be treated in a pre-defined hierarchy, thus increasing the
complexity of the error localisation procedure.

With traditional approaches, the error localisation prob-
lem is not only complex, but also time and cost consuming.
Time and cost are mainly affected by: 1) the complexity of
designing and implementing automatic deterministic ad hoc
procedures, and 2) the resources spent in manually editing
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observations having low probabilities of being in error
and/or low impact on target estimates (over-editing).

In this paper we propose a probabiligtic formalisation of
the problem through finite mixture models (McLachlan and
Basford 1988; McLachlan and Peel 2000).

This moddling can provide a principled statistica
gpproach, alowing an estimate of the conditional probabil-
ity that an observation be affected by unity measure error.
The advantage of the proposed approach is that it represents
a general method allowing a multivariate data anadysis, and
providing elements that can be used to optimise the balance
between the automatic and interactive components of the
editing procedure, i.e, between time and accuracy
(Granquist and Kovar 1997).

This work is organised as follows. In section 2 the
proposed modd is introduced together with the EM
dgorithm for the estimates of the model parameters. In
section 3 diagnogtics for selective editing are described. In
section 4 the results of the application of the proposed
method to both simulated and real data are illustrated.
Findly, in section 5 concluding remarks and future research
are outlined.

2. TheMode

It is hard to give a comprehensive formalisation of
random and systematic errors. In this context, we provide a
definition that, though not exhaugtive, includes many com-
mon stuations. Let X~ be the vector of the survey target
variables, and (p, ¥) the corresponding mean vector and
covariance matrix. Let us suppose that the measurement
process is affected by a random error mechanism R having
impact on the covariance structure of X~ but leaving the
mean vector unchanged, and consequently let X be the
corresponding  “contaminated” variable, with E(X)=
E(X")=p, Va(X)=3Y . Also, we assume that X can
in turn be affected by a systematic error mechanism Sacting
only on its expected value: p—=>—@(p) for some function
¢ (eg., if an additive error mechanism is assumed, ¢(n) =
p + constant). As a consequence of the two error mecha
nisms, assumed to be independent of one another, observed
data can be described by a random vector Y whose
distribution, conditional on X, depends only on the
systematic error mechanism. Our approach to the trestment
of systematic errors consists of building up a model for Y
focusing only on the detection of systematic errors, thus
aming a recovering the randomly contaminated data
represented by the random vector X. This is the gpproach
generaly adopted in editing procedures, where systematic
erors and random errors are dedt with separately and
hierarchically.
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The previous definition of systematic error includes unity
measure error, once data have been transformed in loga
rithmic scale. In fact, unity measure error generaly acts
multiplying variables by a constant factor. Hence data in
eror gppear in log-scae as trandated by a vector of
congtants, that depends on which items are in error (“error
pattern”), while the covariance structure is the same for each
error pattern. Moreover, as matter of fact, in business sur-
veys variables are frequently consdered log-normal. Thus
in logarithmic scale the Gaussian setting can be adopted.

Following the formalisation so far introduced, our goal
becomes to assign each single observation to a specific
“error pattern”, that corresponds to locdise itemsin error. If
we interpret each single error pattern asa*cluster”, the error
localisation problem is transformed in a cluster anaysis
problem, and we can exploit experiences from the model-
based cluster analysistheory (Fraey and Raftery 2002).

More in detail, let us suppose we have n independent
observations Y; = (Y, ..., Yiq), i=1 ..., n, corresponding

to the g—dimensiona vectors X; =(X;, .., X;;) with
pdf.  f(x, .., X;0), such tha E(X, ..., X,)=
(Hys o Bg)=m, ad Var(Xy, ..., X,)=X.

Based on the assumption that systematic errors affect the
random vector X only by transforming its expected value
pinto @4(n), where ¢,():R* >R, for g=1 .., h
are a st of known functions, the functions ¢, characterise
univocally h distinct clusters (error patterns), differing each
other only on the location parameter. For instance, if the
systematic error possibly affects al the variables X, for
s=1 ..., g, in the same manner by transforming their
expected values i accordingto p, — p +C, where C is
a known constant, the number of clusters will be h=29,
i.e, the number of different combinations of error
occurrence on the g variables (including the case of no
eror). In this case, each function 0y and each
corresponding cluster, is associated with one of the 29
possible sub-sets of variables affected by the error; eg., the
group G characterised by the mean vector pg =
(Hys 1y +C, g, By, - By), IS @ cluster of units with
error affecting only the variable X,. We remark that we
assume a common covariance matrix because we make the
hypothesis that the possible random error acts in the same
way on al the data.

For the error localisation purpose we follow a model-
based approach based on finite mixture models, where each
mixture component G,, g=1 .., h, represents a single
error pattern. Formaly, we assumethat Y, = (Y, ..., Yiq),
for i=1,..,n, ae iid wrt X'« f(;8,), where
Y., =1 and m, > 0. The mixing parameters m, represent
the probability that an observation belongs to the t"
mixture component.
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In order to classify an observation y, in one of the h
groups, we compute the posterior probability
T4(y;; 6, m)= pr(i" observation € G, | y;; 8, =), that is

h
Tg(yi ) e! n) an fg(yw eg) an f[(ylr et)
t=1

g=1..h (O

The i™ observationisassigned tothe dlugter G, if

0, m) g=1 ..., h; g=#t.

T (Y 0, T) > 1, (Vi
The previous alocation rule is the optima solution for
the classification problem, in the sense that it minimises the
overdl error rate (Anderson 1984, Chapter 6).
Since, in place of the parameters (6, m), generaly
ur)known, we use the maximum likdihood estimates
(6, m), the classification rule becomes:

Tt(yw TC)>T (yl’e TC) g 1.

We assume that the f,(y; 0,) is a multivariate normal
density MN(n,, 2) and that each function ¢ (-) acts on
the mean vector p asatrandation: @, (n)=p+C,, where
C, representsthe trandation vector for the mean of the g™
cluster and it is supposed to be known. This setting, as
dready noticed, is suitable for dealing with unity measure
error. In order to compute the likelihood estimates, we use
the EM dgorithm as suggested in McLachlan and Basford
(1988). Nevertheless, an additiona effort is necessary to
adapt the agorithm to our particular Stuation, where the
mean vectors of the mixture components are linked by a
known functional relationship. Thus, while in the non-
congrained case (McLachlan and Basford 1988) a different
mean vector has to be edtimated for each mixture
component, in our constrained situation only one mean
vector needs to be estimated. The resulting modified EM
agorithm consigts of defining some initial guess for the
paameters to be esimated #,” for g=1, ..

(@, XY and applying until convergence the foIIowmg
recursive scheme:

. hyg#t. 2

i) compute the posterior probabilities rgi(k)z

1,%(y;;8, m) under the current estimates 7%,
%k) , 2 (kistheindex referring to the k™ cycle)

(k)

7,0 exp{—;(yi _ﬁg(k)j(i(k)jl(yi —ﬁg(k))}
Zn(k) exp{ z(y‘ _ﬁt(k))(i(k)j_l(yi —ﬁt(k))}

T
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i) calculate the new estimates by the following recursive
equations:

n
~ (k) _ N~ (k)
Ty = > T4 In

i=1

h n h
A~ (K+1 ~ (k) ~ (k+1)
”H):Z DA ¥iIn=3 Coity™
g=1

g=1 i=1

~ (k)

DR DRI

h
g=1 i=1l

(yi _"g(k+l))(yi _ug

Weremark that i, standsfor i +C, .

In practical gpplications, it turns out that a crucial role is
played by the choice of starting points, as usua in the EM
agorithms (see Biernacki, Celeux and Govaert 2003). To
overcome this problem, we use an initialisation Srategy,
following Biernacki et al. (2003), consisting of several short
runs in terms of number of iterations, of the algorithm from
random initidisations followed by a long run of EM from
the solution maximising the observed log-likelihood.

It isworth to mention that, due to the location congtraints,
the parameters to be estimated are sensibly fewer than those
in a usual mixture problem. Actualy the higher is the
number of variables analysed the bigger is this difference;
for instance in the case of three variables and 8 clusters we
need to estimate 16 parameters instead of 37. This aspect is
particularly important when we deal with smal samples.
Moreover, congraints on cluster locations make easier to
identify “rare clusters’. In fact, being the relative distances
between mean vectors fixed, the estimation problem reduces
to estimate the location of the convex polyhedron whose
vertices are the cluster centroids. In other words, since the
location of one centroid univocaly determines the positions
of al the others, small cluster parameters are more easily
estimated than if they were not constrained.

Since the introduced moddling is based on the
assumption that observations are normally distributed,
model validation is an issue to take into account. The
problem of assessing normality in mixture models is well
described in McLachlan and Basford (1988). It is essentialy
based on the quantities a; described in the following. Let
yq for i=1 .., m, be the observations assigned to the
g" duster for g=1, ..., h, according to the estimated
model. Let p; be the value caculated using the estimated
parameters, following the formula:

(k+1)) (kD).

/nn

(vmg/q)D(ygi,ﬁg;Zj
pgi = AN €)
(V+q)(mg _l)_ng(ygiuiig;ZJ
where D(,-; M) is the Mahadanobis squared distance
based on the metric M, and v=n-h-q. We define égi
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as the area to the right of the p, vaue under the F_,
distribution (for details see McLachlan and Basford 1988
Chapter 2).

Under the normality assumption, égi fori=1, ..., rﬁg is
gpproximately uniformly distributed on (0,1). Hawkins
(1981) suggests using the Anderson-Darling statistic for
assessing the uniform distribution of 4. The a; are aso
useful to detect outliers, i.e., aypical observations with
respect to the model. In McLachlan and Basford (1988) the
lower is & the higher is the probability of y, of being
atypical, thus all observations with &, <o, where o isa
specified threshold, can be considered as atypical.
Suggested  threshold levels range from o=0.05 to
o =0.005, depending on which outlying observations
(more or less extreme values) are to be selected.

3. Diagnosticsfor Sdlective Editing

Once the parameters of the mixture have been estimated,
we are able to classfy data into the different clusters, i.e,
for each observation we can assess whether it isin error or
not, and which variables are in error. However, different
types of criticad observations can be identified after the
modelling phase: units classified in a cluster, but having a
non-negligible probability of belonging to another cluster,
and observations that are outliers with respect to the model.

In order to increase data accuracy it would be useful to
make a double check on critical observations (through either
aclerica review or, in the most difficult cases, afollow-up).
On the other hand, in order to reduce possible over-editing
and editing cogts, the manua review and/or follow up
should be concentrated on the most critical observations.
The proposed mixture model directly provides diagnostics
that can be used to thisaim.

A firgt type of critical units is represented by possibly
misclassified observations. In order to measure the degree of
belief in the class assigned to an observation y, we can
consider the corresponding probability resulting from (2).
Observations, for which this probability is not very close to
one, have a non-negligible probability to belong to another
cluster. These observations are those in the region where the
mixture components overlap each other.

In addition to the previous type of critical units, there are
other observations that are far from all the clusters (all the
mixture components), i.e., outliers with respect to the
model. Also these observations represent critical situations.
In order to identify this kind of outlier we refer to the
quantities &; described in the previous section.

Classification probability and atypicaity index &
should be used, according to a selective/significance editing
gpproach (Latouche and Berthelot 1992; Lawrence and
McKenzie 2000), to build up appropriate score functions to
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prioritise critical units. An example of how to use these
diagnostics to thisaim isgiven in subsection 4.2.

4. [Illustrative Examples

In this section some experiments carried out in order to
investigate the peculiarities of the proposed method are
presented. Firgtly, through a simulation study, we anayse
the performance of the proposed modd when applied to
data that depart from normality. Secondly, through an
gpplication on real data, we describe how this approach can
be applied in Officia Statistics.

All the experiments are performed using the R environ-
ment for statistical computing (http:/Awww.r-project.org/).

4.1 Simulated Example: Departurefrom Normality

In this experiment we describe the results obtained by
applying the mixture approach to the three different
populations depicted in the firgt line of Figure 2. The first
distribution is a bivariate norma (MN), hence it represents
the case when the modd is correctly specified. The second
one corresponds to a bivariate t digtribution (MT), i.e, it
mimes the situation when the departure from normality is
essentialy in having heavier tails. The last oneis a bivariate
skew—t digtribution (ST) (Azzdini and Capitanio 2003,
Azzdlini, Da Cappello and Kotz 2003), and it represents a
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population distributed according to an asymmetric distri-
bution with heavy tails.

From these distributions we build a four components
mixture model by adding to each unit one of the four
trandation vectors C,=(0, 0), C,=(0, log(1,000)),
C, =(log(1,000), 0), C, = (log(1,000), log(1,000)) with
probabilities ©, =0.5, n,=0.1, n,=0.1, and m,=0.3
respectively. These parameters represent the mixing
proportions of the mixture mode and refer respectively to
the probabilities of no trandation in the variables, trandation
in only one of the two variables, and trandation in both
varidbles. From each mixture, we draw 100 samples of
1,000 observations. In the second line of Figure 2, we report
one of these samples (MN-Mixt, MT-Mixt, ST-Mixt),
corresponding to the three different populations MN, MT,
ST respectively.

For each sample, we compute the number of correct
classfications obtained by using the mixture approach
described in section 2. The mean number of correct
classifications over the 100 samplesisreported in Table 1.

As it can be seen in Table 1, the frequency of correct
classifications decreases with the departure from normality.
However it seems acceptable dso in the critical case ST,
where the population is characterised by both asymmetry
and heavy tails.

MN-Mixt

o 510 03 13 23
MT—Mixt

ST—Mixt

Figure2. Contour plots of thethree bivariate distributions multinorma (MN), t—student
(MT), skew—t (ST), and scatter plot of the corresponding mixtures MN—Mixt,

MT-Mixt, ST-Mixt.
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Tablel
Frequency of Correct Classifications
MN MT ST
% correctly classified 985 975 95.6

Asdiscussed in section 3, the mixture approach provides
edements (such as the degree of atypicdity and the
classfication probability) that can be used in order to
prioritise units to be clericaly reviewed. Therefore, an
overdl assessment of the procedure should consider also the
results obtained through a selective editing approach based
on these model diagnostics.

In order to analyse the characterigtics of atypicality index
and classification probability, we examine a single sample
of 1,000 observations drawn from the three populations so
far introduced. In Figure 3, the three samples MN-Mixt(a),
MT-Mixt(a), ST-Mixt(a) are represented, furthermore the
misclassified units are depicted with a cross in the same
graph. The number of misclassified units is 19 for
MN-Mixt, 20 for MT-Mixt, and 36 for ST-Mixt.

On this sample, we focus on the impact of different
threshold levels both for atypicality (o) and classification
probability (B). For each threshold, we report in Table 2
and Table 3 the number of units below that threshold, i.e,
the number of critical observations (N. Atyp, N. Pr. Class),

and among them the number of misclassified units (Atyp -
Misclas, Pr. Class- Misclas).

Asfar as atypicality is concerned, we note that when the
model is correctly specified, the importance of the
atypicality index in recovering misclassfied units is
negligible, while the classification probabilities are more
effective. On the other hand the degree of atypicdity is
important when the model departs from normality. It is clear
that the number of observations sdlected for a given
combination of thresholds oo and B isnot equa to the sum
of the frequencies obtained in Table 2 and Table 3. Thus, in
order to evauate the joint impact of these two indices we
choose the two following thresholds o=0.005 and
B=0.975. We report in Figure 3 (second line) the units
selected only for the atypicality value (squares), only for the
classification probability (triangles), and for both of them
(crosses). From these figures we see how the impact of
atypicality is mainly on outliers identification while the
classification probability works on the overlapping regions.
In Table 4 the number of sdlected units and, out of them the
number of misclassified units are shown.

We note that for population MN-Mixt, apart one
observation, al the misclassified units are sdlected. For
MT-Mixt, we are able to sdect 14 out of the 20
misclassified units, and in the most critica sample ST-Mixt
we select 24 out of the 36 misclassified units.
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Figure 3. Misclassified units (crosses) in MN—Mixt(a), MT—Mixt(a), ST—Mixt(a). Critical
units for atypicality (square), for classification probability (triangle), and for both
of them (cross), in MN—Mixt(b), MT—Mixt(b), ST—Mixt(b).
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Table2
Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Atypicality
MN-Mixt MT—Mixt ST-Mixt
o N. Atyp Atyp — Misclas N. Atyp Atyp —Misclas N. Atyp Atyp —Misclas
0.05 50 1 84 9 68 14
0.01 15 0 50 7 33 8
0.005 8 0 39 7 20 5
0.001 4 0 25 4 14 2
Table3
Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Classification Probability
MN-Mixt MT-Mixt ST—Mixt
B N.Pr.Class Pr.Class—Misclas N.Pr.Class Pr.Class—Misclas N. Pr. Class Pr. Class—Misclas
0.99 119 19 63 12 182 26
0.975 76 18 46 11 82 26
0.95 55 14 35 9 66 21
Table4
Number of Critical Observations and Misclassified Units with Respect to Atypicality and Classification Probability
MN-Mixt MT—Mixt ST-Mixt
Thresholds N.Crit. Units N. Misclas  N.Crit. Units N. Misclas N.Crit. Units  N. Misclas
o, =0.005, B =0.975 84 18 79 14 98 24

4.2 An Application to Real Data: The 1999 Italian
Water Survey System

In this section we describe an application of the mixture
model gpproach to real survey data. The data are taken from
the 1999 Italian Water Survey System (WSS). The WSSisa
census that collects information on water abstraction, supply
and usage for the 8,100 Italian municipdities. We restrict
our analysis to the municipalities belonging to one of the
data domains defined by atimetry (2,041 observations) and
to the main variables Total Invoiced Water (Tl) and Total
Qpplied Water (TS). Both these variables refer to water
volumes and the respondents are requested to provide them
in thousands of cubic meters. The scatter plot on log-scae
of per capita water invoiced (W) versus per cepita water
supplied (WS) (Figure 4) shows the presence of four clusters
corresponding to unity measure error in one, both, or none
of the target variables. This is probably due to the
misunderstanding of some respondents that expressed water
volumesin litres or in cubic meters rather than thousands of
cubic meters, as requested. As expected, the two most
populated clusters are those corresponding to non-erroneous
units and to units where both variables are in error.
Nevertheless, we can note the presence of two rare clusters
corresponding to observations where the unity measure
error affectsonly Tl or only TSrespectively.

In Table 5 a label is assigned to each group associated
with a specific error pattern. For the sake of smplicity we
introduce two flags Ers and Er; assuming vaue 1 or O,

depending on whether the corresponding variables are
affected by the unity measure error or not, respectively.

In order to identify and correct the unity measure error
we apply the procedure described in sections 2 and 3. We
classfy each observation according to a specific error
pattern, i.e,, we assign each unit to one of the clusters G, ,
for t=1, ..., 4. Theresaultsarereported in Table 6.

For each unit the atypicality index is also calculated and
the threshold oo =0.005 is chosen in order to flag atypica
units. According to this threshold, 71 observations are
selected as atypical, marked by “crosses’ in Figure 7. Once
thevalues &; are computed according to Formula (3), atest
asessing the normdity assumption can be performed.
Actualy, following McLachlan and Basford (1988, Chapter
2), the Anderson-Darling test on the uniformity of égi on
each single estimated cluster is performed. The p-values are
below 0.001 for the two largest clusters. Since the test is
based on asymptotica approximations, we do not take into
account the results on the other two rare populations. In
Figure 5 we report the empirical sample quantiles versus the
normal quantiles of the variables log(WI) and log(Ws),
focusing only on the subset of data classfied as non-
erroneous. We notice that departure from normality is
mainly due to heavy tails. Based on the results obtained in
section 4.1, where the method performed satisfactorily also
in non-gaussan setting, we are confident about the good
performance of the mixture approach on the survey data
This expected behaviour is confirmed by the application
results showed in the following.

Statistics Canada, Catalogue No. 12-001-XIE



60 Di Zio, Guarnera and Luzi: Editing Systematic Unity Measure Errors Through Mixture Modelling

Log(WI)
4 2 0
| | |

-6
|

T | T T
a 2 4 §)

Log(WS)

Figure 4. Scatter plot of log(WS) and log(WI).
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Figure 5. Normal gg—plot of log(WS) and log(WI).

Tableb
Error Patterns and Error Labels

Ers=0 Es=0 Es=1 Es=1

Error pattern

En=0 Ep=1 Ep=0 Ep=1
Cluster label Gl G2 G3 G4
Table6

Number of Units Assigned to Each Cluster

Cluster label Gl G2 G3 G4
N. of units 1,800 16 10 215
% 882 08 05 105
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In the remaining part of this section, it is shown how the
posterior probabilities can be used to prioritise units to be
reviewed which are likely to provide the grestest editing
benefit, taking into account the potential impact of the
clerical editing on the estimates. To this aim, note that a
wrong classification of an observation causes that the fina
values of & least one variable differ from the corresponding
true values by a multiplicative factor. These discrepancies
can serioudly affect the accuracy of the estimates leading to
a strong hias. In order to select the potentialy erroneous
units that most likely have a strong impact on the target
estimates, we follow the sdective editing approach. Let
X;, X, denote the variables TS TI respectively. For each
unit u;, i =1, .., n, andfor each variable X;, j=1, 2, let
us define:
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X.. :datafree of systematic error;
: Observed data;

data after the treatment of systematic error based
on the classification through mixture model (i.e.,
X;=Y; or X;=Y,/1000 depending on the
cIuster theunit u, isassigned to).
Let us suppose that the target estimates refer to population
totals T(X;)=2,; X;. Further, denote by E.() the
expectation over the distribution of the random variable X,
conditiona on the observed data Y; and the data after
correction X Then, from the inequaity
|2 E (X = X)) 1< 2 B | X = X, | it follows that the
quantity on the right hand side can be viewed as an upper
bound for the expected bias of the tota estimate for the
vaiable X, based on the corrected values X;. The last
consideration suggests a method for selecting the most
“influential” units with respect to the estimate T(X,): in
order to guarantee the requested level of accuracy and to
minimise costs due to manual check, we define aloca score
function S = (E; | X; - X; N/T(X,), where T(X,) is
a reference etimate for T(X;), for instance the estimate
from a previous survey, or arobust estimate. In our case, in
order to robustify the preliminary estimate we first exclude
from the data the atypical observations, then compute the
mean value on this subset, and then multiply it by the tota
number of units.

The locd score §; measures the impact of the potential
unity measure error associated to the unit u, on the target
edimate T(X;). Then, units can be sorted by their score
SJ. and, starting from the highest vaues, the first units can
be sdlected until the sum of the remaining S; values is
lower than a predefined threshold.

If both the variables TS and Tl ae considered
smultaneoudy, a global score S, for i=1, ..., n, can be
obtained by suitably combining the local score functions
S;; ] =1 2. Possible choices ae § =(S§;+8S,)/2, or
S =max, , S;. Thelatter function, for instance, ensures
that the |mpact of the potentia unity measure error
associated with U, on each estimateis not greater than S.

In order to compute the scores §; the conditional
expected value E; | X;; — X | is to be estimated for each
unit u,, i =1, ..., n, andfor each variable X, for j=1, 2.
This can be easily done through the posterior probabilities.
For instance, suppose that the unit u, has been assigned to
the cluster G,. This means that, for this unit, the observed
value of TS (Y;;) has been considered correct, while the
observed vaue of TI (Y,,) has been flagged as affected by
unity measure error (i.e, multiplied by 1,000). The
correction consists of dividing by 1,000 the observed value
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of TI, ie (X,=Yy, X,

i2 =Y;,/1,000). The conditiona
expected value E; | X;; — X,

| can be computed asfollows:
Ee[ Xy = X =2 = Yu Pr (U € G, UG,)

Y
1,000

999
:LOOOYll(Tsl +74)

+ =Y, Pr(ueG,uG,)

Yo _ Yo

E.[X,, - X, |= ‘—— Pr(ueG, UG,

1,000 1,000

s Y,
271,000

999
1,000

Pr(ue G uG;)

Yo (T +13),

where 1, is the estimated probability that unit u; belongs
to cluster G,. In a similar manner the score functions can
be calculated for al the units.

In practice, in our application we sort the units by their
global score S, max;_; , S; (ascending order). Then we
exclude from clerica re\/leN dl the first observations such
that their cumulative sum of S isbeow §, where § isa
specified tolerance level for the impact on the estimates due
to errors remaining in data. In Figure 6 the behaviour of the
cumulaivesumof S, S;) =2, .; S, isshown for thefirst
most critical 10 observations. We remark that for the sake of
clarity we have not reported all the observations because for
most of them S, is close to zero causing an unreadable
picture for their different magnitude. Note that a residua
relative error less than &= 0.001 is expected by selecting
only the first two units (drawn with crosses).

In Figure 7 all the units sdected because of their
atypicality (71) and/or the relative impact on estimates of
their potential errors (2) are shown: crosses correspond to
observations that are critical for atypicality, squares indicate
the other two types of critica units.

A comparison with the results obtained by the officia
procedure is made. Out of the 1,968 units not selected for
clerical review, 1,911 observations are error free or affected
by unity measure error only. For al of them the
classfication of the mixture modd is correct. Out of the
remaining 57 units characterised by other error typologies,
45 are classified as non-affected by the unity measure error,
while 12 as units with the 1,000 error in both the variables.
This last misclassification can be explained by the presence
of another systematic error (times 100, 10,000 factors) that
is not taken into account in the model used for thisexample.
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A further comparison is about the estimate of the totals.
Under the hypothesis that the values selected for a clericd
review are correctly restored, the reative differences
between the “trug’ total values according to the officia
procedure T(X;) and the model esimate T(X;) as
B(X;)=(IT(X))~T(X))D/T(X,), for j=12 ae
B(X,)=0.005 and B(X,)=0.002. These vaues are not
directly comparable with the tolerance level 6=0.001, in
fact this threshold relates only to impact of the remaining
unity measure errors, while B(X ) is aso affected by other
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kind of errors. Thus, for a more direct comparison, we
replace for these units the wrong values with the “true” ones
obtaining B(X;)=B(X,)=0. This particularly high
performance of the modd is justified by the low degree of
overlapping of the clustersas clear in Figure 7.

5. Final Remarksand Further Research

In this paper we propose a finite mixture model to dedl
with a particular type of systematic error that frequently
affects numerical continuous survey data: the unity measure
error times a congtant factor. The proposed gpproach has the
advantages, with respect to the traditional ones, to formally
date the problem in a multivariate context, to be easly
implemented in generadlised software, and to naturaly
provide useful diagnostics for prioritisng doubtful units
possibly containing influentia errors. The latter character-
istic is particularly important when the Situation is critical,
i.e., when different error patterns overlap each other or in
other words when unity measure errors are among plausible
observations. In these circumstances a clerical review is
needed. Hence, it is important to optimise the selection of
critical observations in order to save time and costs. All
these advantages are the natural consequence of the intro-
duction of a model-based technique. On the other hand, it is
clear that the use of a model-based approach implies prob-
lems related to model assumptions. However, based on the
experiments illustrated in the paper, it seems that also in
cases of departure from the normality assumption, the
proposed technique performs satisfactorily. Nevertheless, it
is worth to mention that for extreme departure from normal-
ity, e.g., when the digtribution is not unimodal, the method
is expected to fail. This can happen in real Situations when
true data contain different clusters, for instance differences
in men and women income might cause a bimoda
distribution for the income itself. In some cases the problem
could be overcome by stratifying data with respect to some
explicative variables, eg., sex in the previous example. An
dternative approach to this specific problem could be based
on modelling each cluster in turn as a Gaussan mixture,
thus obtaining a “mixture of mixture models’ (McLachlan
and Ped 2000; Di Zio, Guarneraand Rocci 2004).

Findly, a last concern is about the number of variables
that can be trested smultaneoudy. Actually, the number of
clusters and then the number of mixing parameters m, can
have an exponentia growth with respect to the number of
variables, making the parameter estimation a critical task.
However it is worthwhile noting that the number of
parameters related to the mean vector and covariance matrix
increases much sower, due to the constraints characterising
our model.
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Using Matched Substitutesto | mprove Imputations for Geographically
Linked Databases

Wai Fung Chiu, Recai M. Yucel, Elaine Zanutto and Alan M. Zaslavsky *

Abstract

When administrative records are geographicaly linked to census block groups, local-area characteristics from the census
can be used as contextua variables, which may be useful supplements to variables that are not directly observable from the
adminigtrative records. Often databases contain records that have insufficient address information to permit geographical
links with census block groups; the contextual variables for these records are therefore unobserved. We propose a new
method that uses information from “matched cases’ and multivariate regression models to create multiple imputations for
the unobserved variables. Our method outperformed alternative methods in simulation evaluations using census data, and
was applied to the dataset for astudy on treatment patterns for colorectal cancer patients.

Key Words: Unit nonresponse; Multiple imputation; Contextual variables; Matched substitutes; Administrative

records.

1. Introduction

In a study on treatment patterns for colorectal cancer
patients, income and education are desired varigbles for
congtructing statistical models of relevant scientific interest.
Unfortunately, individual measurements for these variables
are not directly observable from the cancer registry
databases that are compiled from hospital records, which
like many administrative databases contain primarily
information required for administrative purposes. Instead,
mean values of these variables for smal geographical areas
(census block groups or tracts) including the subject’s area
of residence are used as regressors to estimate income and
education effects. Andyses using such “contextua vari-
ables’ are common in epidemiological and health services
research (Krieger, Williams and Andmoss 1997), and often
produce results broadly similar to those based on individual
variables. If both individual and contextua variables were
available, it might be possible to separate the effects of indi-
vidual characterigtics and contexts; in a purely contextual
anaysis, these effects are confounded. Nonetheless, associa
tions between contextual socioeconomic characterigtics and
quality of care would suggest an equity problem, regardless
of whether such associations primarily reflect individua or
community-level relationships.

In the colorectal cancer trestment tudy, each contextua
variable for a given patient record is assumed to be the
variable's census group (or tract) mean vaue obtained by
geographicaly linking the record's address to a census
block group (or tract). A small but substantial percentage of

patient records (about 3.3% or 1,696 records) have
insufficient address information to permit links with census
block groups, hence making the corresponding contextual
variables unobservable. Such records will be caled
ungeocodable records, while records that can be linked to
census block groups will be referred to as geocodable. To
generate multiple imputations for the unobserved contextual
variables, we propose a strategy that uses information from
more than one “matched case” to help build parametric/
nonparametric imputation modes. In particular, information
from the matched cases accounts for small area effects in
our imputation models, so that there is no need to explicitly
model such effects.

Rubin and Zanutto (2001) use the term “matched
subgtitute” instead of “matched case’, and propose a
parametric imputation mode using only one matched
subgtitute per record. The analyses resulted from their
model were compared to those given by other analytic
methods in an extensve simulation study, but was not
applied to real data. We extend Rubin and Zanutto’ s method
by (1) alowing use of information from more than one
matched case per record and (2) using an empirical rather
than a parametric distribution of residuals.

This research was motivated by our need for multiple
imputations for the partially observed variables in the study
of treatment patterns for colorectal cancer patients. Ayanian,
Zadavsky, Fuchs, Guadagnoli, Creech, Cress, O’ Connor,
Wedt, Allen, Wolf and Wright (2003) analyzed a dataset
that included imputations generated by our method,
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referring to Rubin and Zanutto (2001) and a preliminary
version of this paper that appeared in a proceedings
publication (Chiu, Yucd, Zanutto and Zadavsky 2001).
This paper is the first comprehensive publication of our
methodology and the first published report that describes an
application of Rubin and Zanutto’s method to real data.

The organization for the rest of this paper is as follows.
Section 2 summarizes Rubin and Zanutto’'s method and
gives ageneral description of our method. Section 3 outlines
the application of our method to the colorectal cancer study.
Section 4 illustrates in a smulation study the performance
of our method reative to three other commonly-used
nonresponse adjustment methods.

2. Imputation M ethodology

This section will begin with a summary of Rubin and
Zanutto's method, followed by a generd description of our
method that includes a discussion on out-of-sample versus
within-sample matching, the details of the modeling and
multiply-imputing tasks, and an andysis of efficiency as a
function of the number of matched cases used.

2.1 Matching, Modeling and Multiply Imputing

Rubin and Zanutto (2001) proposed a method called
“matching, modeling, and multiply imputing” (MMM) that
uses matched substitutes to help generate multiple impu-
tations for nonrespondents in sample surveys, without
requiring that substitutes be perfect replacements for the
nonrespondents. Matched substitutes are responding survey
units chosen to match the nonrespondents on one or more
“matching covariates’ — variables that are available prior to
the survey and are convenient for matching but not neces-
sarily for modeling. Asaresult of matching, nonrespondents
and their substitutes may share similar values in their “field
covariates’ —variables that are only implicitly observed and
are therefore not available for data analysis. “Modeling
covariates’ are variables that can be included in datistical
models to adjust for observed differences between non-
respondents and their subdtitutes, but that may not be
available or used for matching. The essence of MMM isthat
both matching and modeling covariates are used, in the
context of proper multiple imputation (Little and Rubin
1987, pages 258 — 259 and references therein).

Condder a smple example where age and address
covariates are available for al unitsin a population prior to
sampling. Finding substitutes matching nonrespondents
with respect to both age and address may be difficult. An
alternative is to match only on address (eg., choosing a
neighbor to be a substitute) and adjust for systematic age
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differences between nonrespondents and matched substi-
tutes through statistica modeling. If neighboring households
were chosen as matched subgtitutes for nonresponding
households, the substitutes and nonrespondents might have
similar socioeconomic contexts (e.g., levels of crime, access
to public transportation, etc.) even though these charac-
teristics might have not been recorded. In this example,
address is amatching covariate, age isamodeling covariate,
and the contextual socioeconomic characterigtics are field
covariates.

In summary, MMM (i) chooses matched substitutes for
nonrespondents and some respondents based on matching
covariates, (i) uses modeling covariates to fit a model
estimating the systematic differences in responses between
pairs of respondents and subgtitutes, (iii) multiply-imputes
the unobserved values using the modd in (ii) under the
assumption that the same relationship holds between pairs
of nonrespondents and substitutes, and (iv) discards dl
matched substitutes after imputation.

2.2 Out-of-Sample Versus Within-Sample M atching

Matched cases may be obtained from out-of-sample data
or within-sample data. In the Rubin and Zanutto approach,
matched subgtitutes are obtained from out-of-sample data
after the missingness is detected. Their description empha:
Szes that the matched substitutes must be discarded after
imputation since including such additional cases in infer-
ences would modify the sample design by adding extra
casesin the “blocks’ that contain unobserved data. Matched
cases are conddered within-sample data if they are obtained
from the database that is available before imputing or even
finding out which records in the database have unobserved
varidbles. As far as the overdl inferentid goals are con-
cerned, these matched cases are not additional cases, but are
part of the original data collection, and therefore will be
included in scientific analyses.

Assuming within-sample matching, we treat the un-
geocodable records as nonrespondents and the geocodable
records as respondents. For each ungeocodable record, a
given number of matched cases are randomly chosen from a
pool of geocodable records within the same small geograph-
ical area (e.g., zip code, which is a posta delivery code
usually representing an area served by a single main US
post office). Similarly, the same number of matched cases
are adso chosen for each of the randomly sampled geo-
codable records (see Rubin and Zanutto (2001) for recom-
mendations on the size of such a sample relative to the total
number of ungeocodable recordsin a given dataset). If more
meatched cases were needed than those are available in the
same small area, the selection pool would be extended to the
“nearest” geographical areas until the required number of
meatched cases was achieved.
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All matched cases in the colorectal cancer study came
from the same cancer database. In general, matched cases
need not be drawn from the same population in which the
nonrespondents and respondents originated. For example,
matched cases for colorectal cancer records can be obtained
from a general population of cancer patients, and a model
can then be fitted to correct for systematic differences. Note
that, with matched cases from a more similar population,
stronger models can be built with more covariates. In our
example, since we used other patients with the same cancer
type, relationships to trestment process and outcome
variables are likely to be consstent.

2.3 Modding and Multiply-imputing

A smple example of our method is given here to convey
the basic ideg; in practice, more complex models may often
be required. Suppose the following relationship holds in the
population,

Yie = X B+ 8, +€, (@]

where i indexes small geographical area, k indexes unit
within area, and vy, and x, are respectively the response
and the characterigtics of the kth unit in geographical area
i. This modd includes a regression prediction X B, a
small-area effect §,, and a unit-specific residua €,. We
assume thet ¢;, follows some distribution F, with mean
zero and variance 2. Note that this development
generalizesdirectly to multivariate vy, .

We extend Rubin and Zanutto's method to allow more
than one match in the same smal area, because having
several matches in small areas is possible (often convenient
and inexpensive) in census data or in large administrative
datasets. Rubin and Zanutto' s assumption of a single match
is appropriate to survey data collection that requires
additiona field work for each match.

The regression coefficients in equation (1) are estimated
usng any collection of observations with two or more
records per small area to fit the regression modd in which
the 5, are treated as fixed effects. With only two cases per
area, B can instead be estimated from the within-area
regression

(Vi = Yiz) = (X5 = X)) B+ (&1 — €12). @

where the small area effect drops out. The residuas from
this regresson have a symmetrical distribution with vari-
ance 202,

Assuming for the moment that we have a draw from the
posterior distribution of B, we cary out the rest of this
anaysis conditional on that draw. Now suppose that we are
interested in imputing for a new unit (indexed as k=0) in
area i, and that we have obtained K; =1 matched cases for
this unit. Denote the outcomes of these matched cases by
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the vector y; =(Yiy, .., Y, )T and the corresponding
characteristics by the matrix X; = (Xjy, ..., X )T With a
flat prior for §;, the posterior distribution for &, | y;, X, B
has mean

y, - X' B €)

and variance 62/K,;, where y, =Y,y /K, and X, =

YK %, /K;. Hence, the predictive distribution for
Yio | ¥is Xi, X0, B hasmean
Vi + (Xio —XT) B @

and variance (1 + 1/K;)o2 which is the sum of the
predictive variance under the model conditional on all
parameters and the posterior variance of ;. These
datements assume that the mean of the residuas is a
sufficient statistic for §,. This assumption is true for the
normal distribution (or natural observations of any
exponential family distribution); we assume it is a least
approximately true for F,, o that we can base inferences
on that mean. Note that use of a flat prior leads to
overdispersed draws relative to what would be obtained
with a proper prior from a hierarchical model, but is much
ampler (especidly in anadyses with the multivariate
outcomes).

An imputation for vy, can be generated by first drawing
c2 from its posterior distribution, second drawing f
conditional on the draw of o2, third computing the
predictive mean in equation (4) from the draw of B, and
finally adding a residual of variance (1 + 1/K;) o2 to the
predictive mean. In simple surveys with B estimated by
equation (2), the posterior distribution of B (conditional on
62 and the daa) under a flat prior is approximately
N(B, (XT X)1o2) where the i row of X is
(X —x%). In more complex designs, the posterior
distribution of B can be approximated using the point
edimate and sampling variance caculated under the
associated design.

The residua can be obtained through modeliing or
sampling. Modeling involves estimating o2 using the
residua variance of equation (1) and drawing the residual
under univariate normality (see Rubin and Zanutto (2001)
for the special case where only one matched case was ob-
tained for each record) or some other parametric distri-
bution. We refer to such an approach as parametric MMM
(PMMM). An dternative is to randomly sample a
regression residua from any area j whose residuals might
be regarded as exchangeable with those from area i (Rubin
1987 pages 166—168). See also Lesder and Kalsheek
(1992, section 8.2.2.4), Kdton and Kasprzyk (1986), and
Katon (1983). Since the variance of such a residual is
[(K; -D/K;]o2, we multiply the randomly-sampled
resdual by \/[(Ki+1)/Ki][Kj/(Kj —1)] to obtain the
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correct predictive variance. We cal
nonparametric MMM (NpMMM).

In summary, our method consists of three basic steps:

this approach

1. Draw matched cases for the ungeocodable records
and for some randomly sampled geocodable records,

2. Use the sampled geocodable records and their
matched cases to fit equation (1) where the §, are
treated asfixed effects, and save theresiduas;

3. Repeat thefollowing for m (usudly 5 to 10) times:

(8 Draw o2 from its posterior distribution, then B
conditiona on the draw of ¢2;

(b) For each ungeocodable record, treat the sum of
the vector of predictive means obtained from
equation (4) and a vector of residuals drawn
using either PMMM or NpMMM as aredization
of the unobserved vector of contextual variables.

24 Efficiency

The efficiency of an imputation is related to the number
of matched cases used. Let V. be the predictive variance of
an imputation model where K matched cases per record are
used. For the modd in section 2.3, V, =(1 + 1/K) 62,
Define efficiency as

V o2 K

V, (1+1UK)o2 K +1

for any podtive integer K. Efficiency increases as the
number of matched cases per record increases; for example,
E, =067, E,=0.8, E,=0.91, and E,, = 0.95.

Theoreticaly each record can have as many matched
cases as permitted by available resources. In practice, the
number of matched cases used often depends on the cost of
matched cases and the cost of computation involved in
modd fitting. In our method, the cost of computation for
each added matched case per record is negligible. In the
colorectal cancer study, while the matched cases were free,
the ability to do the imputation based on alimited number of
matched cases was crucial because confidentiaity restrict-
tions prevented investigators from using the entire dataset in
maodeling with zip codes (even in a coded form) attached.
For illustrative purposes, we will use two matched cases per
record in subsequent analyses.

3. Application: The Colorectal Cancer Study

The colorectal cancer database has a tota of 50,740
patient records, of which approximatey 3.3% are un-
geocodable. Among these, a@bout haf have P.O. box
addresses (often in a rural ared), and the rest are mistyped
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addresses or addresses from newly developed aress that are
not in address databases. In a study of factors predicting
provison of chemotherapy for colorectal cancer patients,
investigators believed that the following three census block-
group means would be useful contextual variables:

Y, =median household income,
Y, = percent with no high school diploma, and
Y, = percent below poverty levdl.

These variables were observed in geocodable records but
unobserved in ungeocodable records. The task was to
generate multiple imputations for the unobserved census
variables using the methodsin section 2.

Each of the block-group means was reported in the
census data for six racelethnic groups, and the scientific
andyses used only the set of block-group means
corresponding to the race/ethnicity of each patient. For
imputations used in Ayanian e al. (2003), we therefore
fitted Six separate modelsto impute al 18(6x3) valuesfor
each ungeocodable patient and then selected the three
variables pertinent to each patient; joint distributions for
different race/ethnic groups were not important because
each imputation only used values for a single group. An
dternative would have been to use race as a matching
variable, but this would have forced us to seek some
matches at a much greater distance geographically, diluting
the predictive value of the geographical match.

For expository purposes, we assume henceforth that only
the block-group mean corresponding to the race of each
respondent is available, but not the means corresponding to
the other five races that are available smultaneoudly in the
census data. This is more typical of data that would be
collected directly from the respondent, where the race
variable itsdlf (as a modeling variable) is quite predictive
because income data for people of different races reflect
differencesin income associated with race.

3.1 Matching and the Dataset

The addresses of over 90% of ungeocodable records
have zip codes. Zip code was therefore chosen as a
matching covariate. A smple diagnostic for its usefulness
appears in section 3.2. The numerical sequence of zip codes
does not aways correspond to neighborhood distance
relationships. For example, Cambridge, Massachusetts has a
02138 post office that also uses the 02238 zip code for
mailboxes, and in nearby Boston there is a 02215 zip code
that was carved out of the 02115 area. Instead of using the
numerical sequence of zip codes, the distances between zip
codes were computed based on latitudes and longitudes of
their main post offices, under the assumption that two zip
codes were closest to each other if their main post offices
were closest to each other.
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The colorectal cancer database has 1,696 ungeocodable
records. The same number (n* =1,696) of geocodable
records was randomly selected from the same database. For
each of these 3,392 records, two matched geocodable cases
were randomly chosen from its own zip code or (if
necessary) neighboring zip codes. This created a dataset
with 3,392x3=10,176 records. Note that n* was a
convenient choice, because the data were free. In general,
the choice of n* could affect both the total cost and the
precison of the edimates. Both the randomly selected
geocodable records and the matched cases were within-
sample data and hence were retained in the anayses for
Ayanian etal. (2003). We asked the cancer registry for
these cases only because for confidentiaity purposes we
could not do the matching ourselves with the data (for the
same cases) that we had in hand.

The modeling covariates used in the imputation model
were the eight administrative-record variables. age, sex,
race, marital status, cancer stage, chemotherapy treatment,
cancer type and radiotherapy treatment, and category of
treating hospital’s American College of Surgeons accred-
itation as of 1999 (ACOS99). These variables are observed
for all 10,176 records included in the imputation model.
(Some of these variables are predictors and some ae
outcomes in the scientific models of the main analyses, but
the digtinction is irrdlevant for imputation.) The census
meen values Y,, Y, and Y; are observed in geocodable
records, but not in ungeocodable records. These variables
were treated as outcome variables of the imputation model
in section 2.3. The data structure is represented by Table 1.

Tablel
Structure of Data Used in Imputation for the
Colorectal Cancer Study

Eight Modding Census
Data* Covariaes Variables
Age Sex ... ACOS9 Y, Y, Y;
Ungeocodable v v v ?2 7?2 ?
Fird Match v N v
SecondMatch ¥ v v N oV
Geocodable vV v N v
FirsMach v v S |
SecondMatch Vv v v NN
* There were 1,696 recordsin each of the six types
of data.
v = observed ? = uncbserved

Before we fitted the model, the percentage outcomes vy,
and y, weretransformed using the scaled-logit function:

(y—a)/(b—a)
'Og(l—w—a)/(b—a)j’ ©

with a=-0.5 and b=100.5 so that after imputations the
inverse transformation with rounding to the nearest integer
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would yield imputed values between 0 and 100 inclusive
(Schafer 1999). Similarly, a log-transformation was applied
to the income outcome y, o that the imputed incomes
would be nonnegative. Note that the digtributions of the
transformed variables are closer to normality than they are
on the original scadle (Schafer 1997). To keep notation
smple, we redefine vy,, y, and vy, as their transformed
versions.

3.2 Préiminary Diagnostics

A gmple diagnogtic test for the usefulness of the
matching covariates is to compare the adjusted R2 for the
regression models predicting the three census variables with
only the moddling covariates, the models with only the
matching covariates, and the models with both. In this
gpplication, zip code was the only matching covariate.
There were 1,133 digtinct zip codes (hence 1,132 dummy
variables) in the 8480 fully observed records (the
geocodable records and al first and second matches). Table
2 shows the adjusted R2 for models with only the eight
modeling covariates, models with only zip code, and models
with both modeling covariates and zip code. The adjusted
R2 for models with both modeling covariates and zip code
are higher than the corresponding ones for models with only
one of the two covariate types. Our imputation procedure
uses information from both matching and modeling
covariates and thus can be expected to work better than
procedures using only the matching or the modeling
covariates (as shown by the simulation study in section 4).
Although the contribution of the modeling covariatesto R2
is relativdy modedt, their inclusion is important for
removing systematic biases and properly representing
relationships that might be important in the scientific
models.

Table 2
Adjusted R2 for Alternative Regression Models

Only  Only Matching Both Modeling

Modeling Covariate  and Matching

Covariates  (Zip Code) Covariates
Median household income (INC) 0.091 0.453 0.496
Percent with no high school
diploma (EDU) 0.115 0.452 0.503
Percent below poverty level (POV)  0.047 0.327 0.343
Mode degrees of freedom® 26 1,133 1,158
Sample sizes 8,480 8,480 8,480
Residual degrees of freedom 8,454 7,347 7,322

(a) With intercept.

(b) The modeling covariates are age, sex (2 levels), race (6 levels),
marital status (6 levels), cancer stage (6 levels), chemotherapy
treatment (2 levels), cancer type and radiotherapy treatment (3
levels), and category of treating hospital’s American College
of Surgeons accreditation as of 1999 (6 levels).

To determine whether a multivariate model was needed,
we fitted a multivariate-outcome regression model with both
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modeling covariates and zip code. The estimated corrdla
tions between the residuas werel r, =—0.194
r,=—0.297, and r,,= 0.357, where “varidble 1’ is
median household income, “variable 2" is percent with no
high school diploma, and “variable 3" is percent below
poverty level. These estimates were significantly different
from zero, which therefore indicated that multivariate
versions of the methods in section 2.3 should be used to
generate imputations.

3.3 Multiple Imputation Results and Comparisons

Imputations under NpMMM were used in the study of
factors predicting provision of chemotherapy for colorecta
cancer patients (Ayanian et al. 2003). Their model included
three indicator variables for ranges of contextua income,
together with 21 other variables representing patient and
hospital characteristics. The multiple imputation analysis
shows that the information loss due to missing information
is aways less than 0.1%, which is much smaller than the
fraction of ungeocodable records (3.3%). As expected, the
largest fractions of missing information appeared for the
income variables. The scientific results in Ayanian et al.
(2003) would not have changed dramaticaly if the
incomplete cases had been dropped. In thistype of research,
however, every case is precious and expensive, and saving
the 3.3% with missing data was a contribution to the study.

For comparison, variances of parameters under the
complete-case andysis were on the average 4.0% larger
than those under multiple imputation anadysis. Such
percentage differences are close to the fraction of
incomplete cases deleted for this analysis. When the
imputations generated by our method were included in the
scientific analysis, the precison of the estimate of the
“rurd” effect was dramatically improved (using only the
complete cases led to 41.6% increase in variance), due to
the concentration of ungeocodable records in rura areas
(21.6% of rurd records are ungeocodable, but only 3.1% of
nonrural records are ungeocodable).

4. A Smulation Study

This simulation study compares performance of our new
method with three other commonly-used nonresponse
adjustment methods. The population of this study was the
1,696 fully observed triples—the 1,696 geocodable records
and the corresponding first and second matches (one row
from each of the last three horizontal blocksin Table 1) —or
5,088 observations. For smplicity, we assumed that the
triples were from distinct zip codes (clusters), hence
i=1 2, ..., 1 =1,696. Each cluster i contained three units
(u=1, 2, 3), and the record of each unit conssted of x;,
(the covariates) and y,, (the censusvariables).
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4.1 Simulated Data and Response M echanism

Assuming that the design was cluster sampling with
sample size 800, we drew random samples of 800 clusters.
For each random sample, about half of the 800 clusters were
randomly selected to have an ungeocodable record in which
the census variables were unobserved, with the probability
of missingness depending on an individud’ s race and on the
mean income of the cluster (zip code). We simulated
missingness under a multinomia logit model where the
outcomes are: nothing unobserved (w,=1), y,, unob-
seved (W, =1), y;, unobserved (w,=1), and vy,
unobserved (w, =1). Specifically, for each i=1, 2, ..., I,
let z,=0 and

z,=a+bxI (unit iu is White)
+ ¢ X (mean income in zip code i) (7)

where u=1, 2, 3. Then

Pr(w, =1 = &p(z,) /> ()
for u=012 3. (8

The results of this smulation study were based on
datasets generated by the mechanism with a=-1, b=11
and ¢=0.0003, which made about 17% of the units in a
random sample ungeocodable, with probability of
geocoding positively related to White race and higher block-
level income. The task was to use the random sample to
edimate y, the mean vaues of the population (1,696
clusters).

The smulation conditions described in the preceding
paragraphs were designed to give a stringent test of the
procedure and alternatives by exaggerating the impact of
unobserved data and making the missingness strongly
related to characteristics both of the individual and of the
area. We were not attempting to smulate the exact con-
ditions of the application in section 3 but rather to use an
artificial population with smilar digtributions to those in the
real population to illustrate the workings of our method and
its competitors.

4.2 Inferential Methods and M easur es of
Performance

Preliminary results indicated that the performance of
PMMM and NpMMM is smilar; NpMMM is, however,
smpler (especiadly in analyses with multivariate outcomes),
because the method does not require explicit parametric
modeling of the resdua variance. Our simulations com-
pared performance of NpMMM (using two matched cases
per record) with three other commonly-used nonresponse
adjustment methods:
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1. Complete-case Method (CCM)
The population means are estimated from al geo-
codable units of arandom sample.

2. Subgtitute Single | mputation (SSI)
This is the traditional use of subdtitutes. The un-
observed census variables of each ungeocodable unit
are replaced by the values of the census variables of a
randomly selected unit from the same cluster. The
resulting sample is treated as if there had been no
ungeocodable unit; al 800 clusters in such a sample
are used for estimating the population means.

3. Multivariate Normal  Multiple  Imputation
(MNMI)
This method uses only one randomly selected unit
from each of the fully observed clusters in a random
sampleto fit the multivariate normal linear regression

yI ~N(B; +x B, %),

with a noninformative prior on the parameters. The
model is then used to creste m sets of multiple
imputations for the unobserved census variables using
a direct multivariate generaization of the algorithm
given by Rubin (1987, page 167).

Note that CCM uses neither matching nor modeling
covariates, SSI uses only the matching covariate (zip code),
MNMI uses only the modeling covariates, and NpMMM
uses both the matching covariate and the modeding
covariates.

The CCM and SSI data are andyzed by the usua
compl ete-data method which estimates the population mean
from the data with the appropriate estimator for cluster
sampling from a finite population, including the finite
population correction (Cochran 1977, Chapters 9—10). Both
MNMI and NpMMM produce m sets of complete data,
each of which is analyzed by the same complete-data
method used for the CCM and SSI data; the m sets of point
and variance estimates are then combined using the multiple
imputation combination rule (Rubin 1987; Schafer 1997,
pages 108—110).

For each smulation t €{1, 2, ..., T}, we denote the
point estimates from the four methods by V. (t),
Vss(t), Yun (), and Yy, (t), and the means of these
quantities across simulations are written & Y,
Vss» Ywn, @d Yy,. Performance evaluation of the four
nonresponse adjustment methods will be based on three
measures:

1. Percent reduction in the average bias of an
estimator relative to the average bias of the CCM
estimator. Denote the average bias of an estimator by
be. Then

Pe =V -V,

71

where E€{CC, SS, MN, Np}. We define the
percent reduction in the average bias of an estimator
relative to the average bias of the CCM estimator as

R(BE, BCC) — IbCC_l_ I bE I ’
|Bec |
where b; is an element of b, and b is the corre-
sponding element in b.. By definition, R(b.., b.c)
iszero.

2. Estimated cover age of the nominal 95% confidence
intervals for y. Intervals produced by the CCM or
SSI estimates were constructed under appropriate
t—distributions. For intervals associated with the
MNMI or NpMMM estimates, we followed the
procedure outlined in Schafer (1997, pages 109—-110)
and replaced the degrees of freedom v with the
updated version of Barnard and Rubin (1999).

3. Estimated fraction of missing information about
y. For each of MNMI and NpMMM, we computed
71, an egtimate of the fraction of missing information
about y (see Barnard and Rubin (1999) for the most
recent expression).

4.3 Reaults

The smulation procedure was implemented 2,000 times,
and m=10 was used for MNMI and NpMMM. The mean
values of the census variables in the populatiion were
y=(40,642, 21.65, 9.55)T. The average bias of the CCM
eimator was b, = (-5,405, —3.97, —1.79)T. Other
results are summarized in Table 3. NpMMM achieved large
percent reductions in relative average bias (95.0% to
99.5%). SSI reduced biases more than MNMI, because the
matching covariate (zip code) was much more informative
than the set of modeling covariates (section 3.2). Since the
reponse mechanism was nonignorable (the response
probabilities depended partly on income), the poor
performance of MNMI, which did not use the geographical
information to help predict income, was expected. Note that
MNMI is biased, and the bias is large enough so that with
the sample size considered in this paper the confidence
intervals never covered the hypothetica population values.

Under MNMI and NpMMM, the percent of missing
information was much less than the average percent of
unobserved data. The percent of missing information was
smaller under NpMMM than under MNMI. Only NpMMM
produced well cdibrated intervals with correct coverage. In
summary, NpoMMM combines the best features of the other
two methods — close-to-nominal coverage and less missing
information.
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Table3
Simulation Results®: Bias Reduction, Coverage, and Fraction of
Missing Information

Method
Measre Mean  \oMMM  MNMI sSI
Percent bias INC 995 446 95.2
Reduction EDU 95.0 406 837
100R(bg, beey)® POV 96.8 326 80.3
Estimated INC 95.1 0.00 89.8
Coverage of the EDU 94.8 0.00 65.7
95% CIs9 POV 95.2 0.00 66.0
100x Estimated INC 1.00 9.92
fraction of missing  EDU 0.05 0.07
information A(? POV 0.07 0.08

(a) Based on 2,000 replicationsand m=10.

(b) By definition, 100R(becy s Boey ) = 0-

(¢) Resultsfor the CCM estimates were all zeros.

(d) The average percent of unobserved data was approximately 17%.

5. Concluson

This work extends Rubin and Zanutto (2001) in two
respects. First, our method alows more than one matched
case per record. We show theoretically that the efficiency of
an imputation increases as the number of matched cases per
record increases. When the cost of matched cases is rela
tively low, our method offers an option where information
of more than one matched case per record is used to help fit
imputation models at a negligible computational expense.
Second, NpMMM does not require explicit parametric
modding of residua variance(s), hence smplifying the
modding task (especidly for andyses with multivariate
outcomes). This nonparametric approach makes it feasible
to apply our method to datasets with complex model
dructures. In a smulaion study, NpMMM estimates
achieved subgantiadl bias reductions, and NpMMM
produced confidence intervals with correct coverage.

Although we have focused on geographically-based
matching to complete unobserved geographically-linked
variables, the procedures described in this paper can be
generdized to other matching variables. For example, to
impute clinicd variables, it might be more appropriate to
match to another patient in the same hospital, if clinica
characterigtics and therapies are likely to be more strongly
asociated with the hospital than with the geographic
location of the patient’ s residence.
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Hier archical Bayesian Nonignor able Nonresponse Regression
Modelsfor Small Areas. An Application tothe NHANES Data

Balgobin Nandram and Jai Won Choi*

Abstract

We use hierarchical Bayesian models to analyze body massindex (BMI) data of children and adolescents with nonignorable
nonresponse from the Third National Health and Nutrition Examination Survey (NHANES I11). Our objective is to predict
the finite population mean BMI and the proportion of respondents for domains formed by age, race and sex (covariatesin
the regression models) in each of thirty five large counties, accounting for the nonrespondents. Markov chain Monte Carlo
methods are used to fit the models (two selection and two pattern mixture) to the NHANES 111 BMI data. Using adeviance
measure and a cross-validation study, we show that the nonignorable selection model is the best among the four modds. We
aso show that inference about BMI is not too sensitive to the model choice. An improvement is obtained by including a
spline regression into the selection model to reflect changesin the relationship between BMI and age.

Key Words: Cross-validation; Deviance; Metropolis-Hastings sampler; Normal-logistic regression model; Spline

regression model.

1. Introduction

The National Hedth and Nutrition Examination Survey
(NHANES II1) is one of the surveys used by the Nationa
Center for Hedlth Statistics (NCHS) to assess the hedlth of
the U.S. population. One of the variables in this survey is
body massindex (BMI), and the World Health Organization
has used BMI to define overweight and obesity. Under
ignorability estimators from the NHANES Il data are
biased because there are many nonrespondents, and the
main issue we address here is that nonresponse should not
be ignored because respondents and nonrespondents may
differ. The purpose of this work is to predict the finite
population mean BMI for children and adolescents, post-
gratified by county for each domain formed by age, race
and sex and to investigate what adjustment needs to be
made for nonignorable nonresponse. Our approach is to fit
severa hierarchica Bayesian models to accommodate the
nonresponse mechanism.

Recently, severa articles have been written about over-
weight and obesity. In outlining the first national plan of
action for overweight and obesity, the Surgeon Genera
caled for sweeping changes in schools, restaurants,
workplaces and communities to help combat the growing
epidemic of Americans who are overweight or obese. He
said that the obesity report “Is not about esthetics and it's
not about appearances. We're talking about hedth.” As
noted by Squires (2001) “Hedth care costs for overweight
and obesity totad an estimated $117 billion annually.”
Overweight children often become overweight in adulthood,

and overweight in adulthood isahedth risk (Wright, Parker,
Lamont and Craft 2001). In a very interesting article, using
NHANES data Ogden, Flegd, Carroll and Johnson (2002)
describe the most recent nationd estimates of the prevalence
and trends in overweight among U.S. children and ado-
lescents. Based on a limited anadysis they conclude “The
prevalence of overweight among children in the United
States is continuing to increase especially among Mexican-
American and non-Hispanic black adolescents.” Several
disorders have been linked to overweight in childhood. A
potential increase in type 2 diabetes mellitusiis related to the
increase in overweight among children (Fagot-Campagna
2000); so are cardiovascular risk factor, high cholesterol
levels, and abnormal glucose levels (Dietz 1998). Thus, it
would be helpful to study the BMIs for children and
adolescents using methods that can provide accurate
adjustment for nonresponse and better measure of precision.

Letting x denote covariates and y the response variable,
Rubin (1987) and Little and Rubin (1987) describe three
types of missng-data mechanism. These types differ
according to whether the probability of response (@) is
independent of x and y (b) depends on x but not on'y and (c)
depends on the y and possibly x. The missing data are
missing completely at random (MCAR) in (&), missng at
random (MAR) in (b) and one may say that the data are
missing not at random (MNAR) in (c). Models for MCAR
and MAR missing-data mechanisms are called ignorable if
the parameters of the dependent variable and the response
are digtinct (Rubin 1976). Models for MNAR missing-data
mechanisms are called nonignorable.

1. Balgobin Nandram, Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280. E-mail:
balnan@wpi.edu; Jai Won Choi, National Center for Health Statistics, 3311 Toledo Road, Hyattsville, MD 20782. E-mail: jwc7@cdc.gov.
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Nonresponse models can be classfied very broadly into
selection and pattern mixture models (e.g., see Little and
Rubin 1987). Let [y] and [r] denote respectively the
density function of the response variable y, and the response
indicator r, with obvious notations for the joint and
conditional dengities. Then the selection mode specifies
that [y,r]=[r|yl[y] and the pattern mixture mode
specifies [y,r]=[y|r][r]. The sdection approach was
developed to study sample sdlection problems (eg.,
Heckman 1976 and Olson 1980). While the two models
have the same joint dendty, in practice the components
[r]y] and [y] for the selection model, and [y|r] and [r]
for the pattern mixture modd are specified. Thus, these
models may differ.

Thus, we use two nonignorable nonresponse models, a
selection model and a pattern mixture model, to analyze the
NHANES Il data. Each model is used in the hierarchical
Bayesian frame work for our nonignorable nonresponse
problem, and to study sensitivity to model choice the results
are compared. In the sdection moded, the response
propensity is related to BMI only, and then the model on
BMI has alinear model on age, race, sex and the interaction
of race and sex. In the pattern mixture modd, the propensity
to respond is related to age, race and sex (not BMI), and the
maodel on BMI has two closely related linear forms on age,
race, sex and the interaction of race and sex. These two
models hold for the entire population. The BMI values of
the nonrespondents and the nonsampled individuas are
predicted from each model. We prefer the selection model
because we can incorporate the structure in the NHANES
11l data, and based on statistical arguments this turns out to
betrue.

Greenlees, Reece and Zieschang (1982) developed a
normal-logistic regresson modd for imputing missing
values when the probability of response depends upon the
variable being imputed. They applied the model to data on
wages and sdary in the Current Population Survey (CPS)
data on wages. David, Little, Samud and Triest (1986)
compared the CPS hot deck method and the normal-logistic
regression modd to wages and sdary from a similar data
s, and they found very little difference between the two
methods. We note that the normal-logistic regression model
is a nonignorable nonresponse selection model, but it does
not account for clustering. To accommodate clustering
within countiesin the NHANES |11 data, it is natural to start
with the normal -logistic model.

Our hierarchical Bayesian selection model has a specid
gructure. In NHANES Il the propensity to respond
increases with age (race and sex play a minor role), and
doctors believe that obese individuals tend not to turn up for
the physical examination. Thus, given the BMI values, like
Greenlees et al. (1982) the response indicators follow a
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logistic regression model with the logarithm of the BMI
values being the covariate. In turn, the logarithms of the
BMI vaues are distributed according to a linear modd in
which the covariates are age, race and sex. Thisis the most
important information we incorporate into the sdlection
model. In addition, unlike Greenlees et al. (1982) our model
includes clustering effects to account for heterogeneity
among counties through the response indicators and the
BMI values. Here each county has its own set of para
meters, and there is acommon distribution over these sets of
parameters. This is also an important prior information we
incorporate into our model, and it is one of the attractive
features of the hierarchical Bayesian methodology.

In the Bayesian approach, the main difficulty is formu-
lating the relationship between the respondents and non-
respondents. This latter issue can be accommodated within
the selection approach through the normal-logigtic structure.
We dso consider a hierarchical Bayes model within the
pattern mixture approach. The pattern mixture modd is a
useful aternative to study sensitivity to the assumption in
the selection model. To assess the assumption of non-
ignorable nonresponse, we also consider specid cases of the
sdection and pattern mixture models to obtain two
ignorable models. We found that a fifth model is required,
in which we extend our selection model to a spline
regresson model to accommodate the dynamic relaion
between BMI and age.

Nandram, Han and Choi (2002) developed a methodo-
logy to analyze the BMI data by age, race and sex when
BMI is categorized into three intervals. This is a multi-
nomial extension of the nonresponse nonignorable analysis
of Stasny (1991) for binary data. This methodology applies
generally to any number of cellsin severa areas (countiesin
our gpplication). Nandram and Choi (2002 ab) consider
further extensions of thework of Stasny for binary data (i.e.,
data from the Nationad Health Interview Survey and the
National crime survey). Here we do not categorize the BMI
values, but rather we treat them in their own right as
continuous values. The quantities of interest are the finite
population mean BMI and the proportion of responding
individuals in each domain formed by age, race, sex and
county.

The rest of the paper is organized asfollows. In section 2,
we briefly describe the NHANES |11 data. In section 3, we
discuss the hierarchical Bayesian models for ignorable and
nonignorable nonresponse. We adso describe the model
fitting, model selection and assessment which use predictive
deviance and cross-validation. In section 4 we describe the
andysis of NHANES I1ll BMI data Section 5 has a
description of a spline regresson model and comparisons.
Findly, section 6 has concluding remarks about our
approach.
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2. NHANESIII Data

The sample design is a siratified multistage probability
design which is representative of the total civilian non-
ingtitutionalized population, 2 months of age or older, in the
United States. The number of sampled individuas in each
age-race-sex group is known for each county. The sample
sSze by county, age, race and sex are relatively parse.
Further details of the NHANES Ill sample design are
available (Nationa Center for Health Statistics 1992, 1994).

The NHANES |1l data collection consists of two parts:
the first part is the sample selection and the interview of the
members of a sampled household for their personal infor-
mation, and the second part is the examination of those
interviewed at the mobile examination center (MEC). The
hedlth examination has information on physical examina-
tion, tests and measurements performed by technicians, and
specimen collection.

The sample was selected from households in 81 counties
across the continental United States during the period from
October 1988 through September 1994, but for confi-
dentiality reasons the final data of this study came from only
the 35 largest counties (from 14 states) with population at
least 500,000 for sdlected age categories by sex and race. In
this paper, we anayze public use data from these 35
counties; the demographic variables are age, race and sex,
and the hedlth indicator of our interest is body mass index
(BMI), weight in kilograms divided by the square of height
in meters (Kuczmarski, Carrol, Hegal and Troiano 1997).
The World Hedth Organization (WHO Consultation of
Obesity 2000) has designated an adult with BMI at least 30
as obese; overweight refers to adults with BMI in the range
[25, 30). For children 1-6 years old and adolescents 7-19
years old overweight and obesity are age-dependent.

Nonresponse occurs in the interview and examination
parts of the survey. The interview nonresponse arises from
sampled persons who did not respond for the interview.
Some of those who were already interviewed and included
in the subsample for a hedth examination missed the
examination at home or at the MEC, thereby missing dl or
part of the examinations. Here we do not consider the small
number of individuals whose BMI values and covariates
(age, race and sx) are missing (i.e., unit nonresponse). For
smplicity and for all practical purposes it is reasonable to
include al individuals with their covariates (i.e., complete
data and item nonresponse) reported in our data analysis.
Cohen and Duffy (2002) point out that “Hedth surveys are
agood example, where it seems plausible that propensity to
respond may be related to hedth.” We note aso that for
children and adolescents the observed nonresponse rate is
about 24%. A partial reason for the nonresponse for young
children is that the parents or older mothers were extremely
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protective and would not alow their children to leave home
for aphysical examination.

We study the BMI data for four age classes (02 — 04,
05-09, 10-14, 15-19 years). Recalling that there are 560
(35 x 4 x 2 x 2) domains, the sample sizes on the average
are very small per domain (e.g., 2,647/560 = 4). Thus, there
is aneed to “borrow strength” from the domains. Also, the
sample sze is small relative to the finite population sze
(eg., 100 x (2,647/6,653,738) = 0.04%). The prediction
problem needs much computation. The observed data
indicate that there is an increasing trend of BMI with age
with dightly increasing variability.

NHANES Il data are adjusted by multiple stages of ratio
weightings to be consstent with the population; see
Mohadjar, Bell and Waksherg (1994). In this ratio-method,
item nonresponse adjustment is done by ratio estimation
within the same adjustment class and the distributions of the
respondents and nonrespondents are assumed to be same.
There is a need to consider methods for handling non-
ignorable nonresponse other than the ratio-adjustment
method. Here we present a Bayesian method as a possible
dternative for studying NHANES 11 nonresponse.

Schafer, Ezzati-Rice, Johnson, Khare, Little and Rubin
(1996) atempted a comprehensive multiple imputation
project on the NHANES III data for many variables. The
purpose was to impute the nonresponse data in order to
provide several data sets for public use. As one of the
limitations of the project they stated “the procedure used to
create missingness corresponds to a purely ignorable
mechanism; the simulation provides no information on the
impact of possible deviations from ignorable nonresponse.”
Another limitation is that the procedure did not include
geographica clugtering. Our purpose is different; we do not
provide imputed public-use data. Unlike Schafer et al.
(1996), we include clustering at the county level, although
there may be a need to include clustering at the household
level. For the complete data there are 6,440 households. Of
these households 52.1% contributed one person to the
sample, 22.5% two persons, and 21.4% at least three
persons. We have cdculated the correlation coefficient for
the BMI vdues based on pairing the members within
households (see Rao 1973, page 199). It is 0.19 which
indicates that as a first approximation the clustering within
households can be ignored.

For our current application, inferenceis required for each
age, race and sex domain within county. One standard small
area esimation method is to identify each smdl area by a
parameter, and then assume a common stochastic process
over the 560 parameters. But because of the sparseness of
the data, this is not desrable. Thus, our models are
congtructed at county level, and a the same time age, race
and sex are represented as covariates. Inference is made for
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each domain formed by crossing age, race and sex within
county through our regression models. Thisisakey point in
our analysis.

3. Hierarchical Bayesan Methodology

In this section we describe two Bayesian models for non-
ignorable nonresponse, and we deduce two additional
ignorable models as special cases. We describe the model
selection and assessment for the selected modd (i.e, the
selection modél).

There are datafrom ¢ =35 counties and each county has
N; (known) individuals. We assume a probability sample
of n individuals is taken from the i" county. Let s denote
the set of sampled units and ns the set of nonsampled units.
Letry, fori=12,...,/ and j=1,2,..., N; betheresponse
|nd|cator (r; =1 for respondents and r; =0 for non-
respondents) for the j™ individual within the it county in the
population. Also, let x; be the logarithm of the BMI value.
We found that the logarithm transformation gives a better
representation, and we use it throughout. Note that r; and
x; aredl observed in the sample s but they are unknown in
ns. Let r=XYr, (i.e, r, is the number of sampled
individuals that responded in the i™ county).

For convenience, we expressthe BMI x; as X, X5, -,
Xie.» Xir 15 -0 X INSA X 43, ..., Xy INNsfor county i. A
key point that we note for what follows is that the r, indi-
viduals are not necessarily random respondents from the n,
individuas randomly sampled. This is the nonresponse bias
we need to address. It is clear that we need to predict the
BMI vaue x; for (a) the nonrespondents in s and (b) the
individuals in ns. Thus, for the finite population of N,
individuas, we need a Bayesian predictive inference for

= and P= ,
Ni Ni
fori=1...,¢0
Letting XI(S 0=3" a %1, K(S’”" = Z?:riﬂ X; I(n =)
and ("% = x /N —n,), we note that

J n+l ij

)Ti — fi {gi(s) Xi(s,r) + (l— gi(S)) Z(s,nr)}_'_ (l— fi ) Xi(ns) (1)

where f,=n /N, and g =r,/n. Notethat whilethe f,
are fixed by design, the g; and X" are observed. Also,
letting B =1, /N; and p™ = (=}, ., 1) (N, —n),

R =fp®+@-f)p", @
i=1...,¢ We develop our hierarchica Bayesian models

to perform predictive inference for quantities like (1) and (2)
depending on the domain.
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3.1 Competing Models

Our models have two parts, one part for the response
mechanism and the other part for the distribution of BMI.
These two parts are connected to form a single model under
nonignorable nonresponse or ignorable nonresponse.

First, we describe the selection moddl. For Part 1 of this
model the response depends on the BMI asfollows

Boi+ By %
e ll

r; 1%, B; ~ Bernoulli {1+ Fo s

(Boi» By) 164,06, va Gf! Py
iid
~ BVNormal(8,,6,; 62, 62, p,), @

0~ N0 ,A?) 6% 6, ~Gamma(a/ 2, al 2)
and p; ~Uniform(-1, 1), 5)

where a,0© and A® ae to be specified. Note that the
prior dendties in (5) are dl jointly independent. The
assumption (3) is important because it relates the response
propensity to the BMI vaues, doctors believe that over-
weight and obese individuals tend not to come to the MECs
for the examinations. Clustering among the counties is
accommodated by (4), and it is this assumption that permits
a“borrowing of strength” among the counties.

The second part of the modd is aout the BMI. The
single most important predictor of BMI is age, with race
and sex playing arelatively minor role. One possibility isto
take the BMI valuesto be

X =W tE, Wy = Ogj + 0y &;

where a; denotes age and €| o3 " Norma (0, 62) for
i=1...,0 and j=1,..., N,. Also, thereisaneed to under-
stand the relationship between BMI and age, race and sex.
We let z;,=1 for an intercept, z;, =1 for non-black and
z;, =0 for black, z;, =1 for maeand z;, =0 for femde,
Z;3 =z, Z;, for the interaction between race and sex, and
we let Z; = (o, Zj1, Zj,, Z3). Then, for a regression of
BMI on age adjugting for race and sex, letting
05 = (Olgy, Oy, Olggs Olgy)  AND @ = (Olyy, gy, Oy, Olyy),
wetake oy = zi’j 0, +Vy and oy = zi’j a,+V; toget

Wy = (2 0y +Vy) +(Z 0y +Vy)ay

where v; and v; are random effects centered at zero with
bivariate normal distribution shown below for each modd.
Thus, in Part 2 of the selection model, we assume

X; =(zi’j (1Ll+v0i)+(zi’j 0, +Vy)a; +e

iid
and e |63 ~ Normal(0, 63), ©)
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iid
(Vo V3 ) [62,62,p, ~ BVNormal(0,0; 62, 2, p,).  (7)

Again, clustering among the counties is accommodated
by (7), and it is this assumption that permits a*“borrowing of
strength” among the counties. For this part of the model, we
use the prior

o, ~ Normal(a?, AD) and a, ~ Normal(a{”, AD),
iid

65°,6,%,05°, ~Gamma(a/2,a/2) and
iid
p, ~ Uniform(-1,1) (8

where a,0!” and A k=12 are to be specified. Note
that the prior dengitiesin (8) are all jointly independent.

The nonignorable nonresponse pattern mixture model is
presented in Appendix A. We have included race, sex and
their interaction in the response part of the model, although
these turn out to be unnecessary. The difference between the
respondents and the nonrespondents in the pattern mixture
modd is that the intercepts in the regression vary with
counties for the respondents but not for the nonrespondents;
other parameters are the same. In this way we are able to
“center” the nonignorable nonresponse model on the
ignorable nonresponse mode with some variation; see
Nandram and Choi (2002 a) for a similar idea. We need to
do s0 because the parameters become unidentifiable if
substantial  difference between the respondents and the
nonrespondents is assumed in the nonignorable nonresponse
mode without the scientific knowledge. While we have
used random effects to discriminate between the
respondents and the nonrespondents, the parameters
providing systematic difference between the respondents
and nonrespondents in model of Rubin (1977), are not
identifiable. Note that while in the pattern mixture modd in
(A.4) there are two specifications/patterns for x; (i.e,
r;=0 and r; =1), but in the selection model there is a
single specification.

We show how to specify parameters like 0, A
09, A? k=12 in Appendix C. For aproper diffuse prior
we choose a to be a value like 0.002. One can aso use a
shrinkage prior on ¢;*> and o,° (see Natargjan and Kass
2000; and Daniels 1999). But this is not necessary in the
hierarchical model.

It is an attractive property of the hierarchica Bayesian
modéd that it introduces correlation among the variables. For
example, in the sdection model, (4) and (7) introduce a
correlation among the r; and the x;, respectively. Thisis
the clustering effect within the areas. Such an effect can be
obtained directly, but it will not be as smple as in a
hierarchical moddl. A further benefit of the hierarchical
modd is that it takes care of extraneous variations among
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the aress; this is intimately connected to the cluster effect.
Yet another benefit is that there is robustness in the model
specifications at deeper levels beyond the sampling process
(e.g., inference with (5) and (8) is fairly robust to moderate
perturbations of the specifications of the hyperparameters).
We have found this empirically here and elsewhere.

We obtain an ignorable nonresponse selection model by
setting B,; =0 for al counties with appropriate adjustment
in the selection model. For an ignorable nonresponse pattern
mixture model we set x; =(Z o, +Vy) + (Z] @, +Vy)
a; +€; for both valuesof the r;.

3.2 Moddl Fitting

In this section we describe how to use the Metropolis-
Hagtings sampler to fit the models. We aso use a deviance
measure to select the best model among our four models.
Then, we use a cross-vaidation andysis to assess the
goodness of fit of the selected model, and because the same
genera principle applies to the four models, we describe
modé fitting for the selection modd only.

Thus, we now combine the mode for the response
mechanism and the model for the BMI values to obtain the
joint posterior dendity of al the parameters. The x; for
j=r+L...,n,i=1..., ¢ aeunknown; that is, they are
latent variables. We denote these latent variables by x ™)
and the observed data are denoted by x°*. Using Bayes
theorem to combine the likelihood function and joint prior
distribution, we obtain the joint posterior density which,
goat from the normdization  constant, is
p(xtm 62 a,B,v,0,p,,p,|x>7) andisgivenin
(B.1) in Appendix B.

The posterior dendty in (B.1) is complex, so we used
Markov chain Monte Carlo (MCMC) methods to draw
samples from it. Specifically, we used the Metropolis-
Hagtings sampler (see Chib and Greenberg 1995 for a
pedagogica discussion). We aso used the trace plots and
autocorrelation diagnostics reviewed by Cowles and Carlin
(1996) to study convergence and we used the suggestion of
Gelman, Roberts and Gilks (1996) to monitor the jumping
probability in each Metropolis step in our adgorithm. In
performing the computation, centering the BMI values help
in achieving convergence (see Gefand, Sahu and Carlin
1995). However, this is not quite a straightforward task
because centering in the logigtic regression affects the BMI
part of the modedl aswell.

We obtained a sample of 1,000 iterates which we used
for inference and model checking. By using the trace plots
we “burn in” 1,000 iterates, and to nullify the effect of
autocorrelations, we picked every tenth iterate thereefter.
This rule was obtained by tria and error while tuning the
Metropolis steps. We maintain the jumping probabilities in
(0.25, 0.50); see GElman et al. (1996).
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3.3 Model Selection and Model Assessment

We used the minimum posterior predictive loss approach
(Gelfand and Ghosh 1998) to sdlect the best model among
thefirst four.

Under sguared eror loss the minimum pogterior
predictivelossis

D, =P+—_G
k+1

P=3 Va1, 6=3 {E0¢"1x™) -7
ij 7

where  f(xP | x°%) =] f (] [Qm(Q] x®)dQ  and
x'© ae the predicted values and Q is the set of all
parameters. This measure extends the one obtained earlier
(Laud and Ibrahim 1995), and we have taken k=100 to
match this earlier version. Note that for the nonresponse
application, these measures are computed only on the
complete BMI data after fitting our nonresponse models.

In Table 1 we present the deviance messure (D,,,) and
its associated components, goodness of fit (G) and the
pendty (P) for the four models. Using the deviance measure
the selection modd is much better. While P is roughly the
same, G is much smaller, making D,,, smaller for the
selection model. The difference between the two pattern
mixture models are more pronounced than the difference
between the two sdlection models. However, because
standard errors are not available, it is difficult to tdl the
strength of the difference.

Tablel
Comparison of the Ignorable, Pattern Mixture and the
Selection Models Using the Deviance Measure

Model G P Dioo
SEI 135 135 270
SE 118 135 253
PMI 268 135 403
PM 204 135 339

Note: Dy = G+ (100/(100+1)) P where G is a goodness
of fit, P a pendty and D the deviance; the pattern
mixture (PM) modd and the sdection modd (SE) are
both nonignorable. SEI is ignorable version of the
sdlection model, PMI isignorable version of the pattern
mixture mode.

Next, we look for deficienciesin the selection model. We
use a Bayesian cross-vaidaion anadysis to assess the
goodness of fit of the selected modd (i.e., the selection
model). We do so by using deleted residuas on the
respondents BMI values.

Let (X)) denote the vector of al observations
excluding the (i j)™ observation (%, 1;)- Then, the (i )™
deleted residual isgiven by

DRES; ={x; = E(; X Ty )}t / STDO; X ¥y ) -
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These values are obtained by performing a weighted
importance sampling on the Metropolis-Hastings output.
The posterior moments are obtained from

LGP Y :I £ O 1Q)T(Q | X5 T ) A2
For the pattern mixture model
0% 1) = £(x; [y =0, Q) p(r; =0[€Q)
+F (% I, =1 Q) p(r; =1[€)
and for the selection model
f(x; 1Q) ~ Normal { (7 a, + V) + (Z; @, +V; )8, 03} .

We adso considered using the conditional posterior
ordinate (CPO) which is f(X; | Xy, I;)) evaluated a the
observed X;. However, these CPO'’s lead to similar results
for identifying extremes.

We drew box plots (not shown) of DRES versus the four
levels of race-sex and the thirty five counties, and they
showed that the selection modd fits well. We drew box
plots of DRES versus age and, interestingly, we found a
pattern. Age class 2-4 seems to fit well; the predicted BMI
values are somewhat high for age class 5-9; and age classes
10-14 and 15-19 have larger variability. We look at the
box plots of DRES versus age even further by separating
out the box plotsfor 18 (i.e., 2-19 years old) individual ages
(see Figure 1). Ages 11-19 fits well, but there is a problem
with ages 2-10 (i.e., adownward curvature in the medians).
The other three models show similar patterns. A further
refinement of the selection modd in section 5 fixes this
problem.

4, Egimation and Prediction

In this section we perform an analysis on the NHANES
1l BMI data for children and adolescents (i.e., 2-19 years
old). We use the sdlection modd, and then as a means to
study sendtivity, we compare prediction under the non-
ignorable nonresponse selection model with that of the other
three models.

4.1 Estimation

We have studied the relation between BMI and age using
95% credible intervas for the parameters in the selection
model. Firg, the interaction of race and sex is not important,
but as expected there is an important relation of BMI on
age. BMI increases subgtantialy with age (95% credible
interval for o, is(11.89, 13.67)). The rate of increase for
white males is smaller (95% credible interval for o,, is
(-2.30,-0.19) and the 95% credible interval for o.,; is
(-3.03,-0.64)). Thus, while BMI increases with age,
there is relatively less increase for white males. Apart from
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the parameter 6,, which indicates strong nonignorability,
the other parameters are essentidly unimportant. For
example, the 95% credible intervals for p, and p, ae
(-0.53,0.39) and (—0.45,0.45) respectively indicating
that asimpler model canbeused (i.e,, p; =p, =0).

We take up the issue of ignorability further. We drew
box plots (not shown) of the posterior densities of the B,
obtained from the iterates from the Metropolis-Hastings
sampler, by county. All the box plots are above zero. This
suggests that the nonresponse mechanism for each county is
nonignorable. In addition, there are varying degrees of
nonignorability. For example, severa counties have the
medians of the box plots near 1.5 while others have them
near 2.

4.2 Prediction

It is desirable to predict the finite population mean BMI
vaue and the proportion of respondents in the finite
population. The sampled nonrespondents BMI values are
obtained through their conditional posterior densties
included in the Metropolis-Hastings sampler. The non-
sampled BMI values are to be predicted.

It is worthwhile noting that our models are applied to the
logarithm of BMI with each individua having her/his
covariates, and s0 the logarithm of each individual non-
sampled value has to be predicted and then retransformed to
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the origina scale. However, the computation is reduced
considerably because age, race and sex for each nonsampled
individua is not known, but the number of individuas in
each age-race-sex domain is known in the U.S. population
by county.

The digtributions of the nonsampled individuas are

F O 11X, 1) = [ (%, 1 IQ)m(Q] X, r)de,
i=1....,¢ j=n+1..., N;,. Forthe pattern mixture model
we have

(%, 1 [€2) = £(x; [, €2) p(r;; 1€2)
and for the selection model we have
f (%, 15 1€2) = p(r 1%,€2) (% 1€2),

where Q denotethe set of al parameters.
Therefore, if we take a sample of sze M from the
posterior distribution, {Q™ :h=1,..., M}, an estimator for
FOG 15 x°)
M
G IX®*)=MTY" f (% Q™).
h=1
Thus, we can fill inthe x; and r; for each Q™ obtained
from the MCMC adgorithm from which we get M

redizations X", P™ h=1,...,M. Inference can now be
made about X, in (1) and P in (2).

AGE

Box plots of the cross-validation resduas (DRES) by

age for the sdection model
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We present 95% credible intervals for the finite popu-
lation mean (FPM) BMI vaue and the finite population
proportion (FPP) responding in order to judge sengitivity to
the four models. Note that we provide these intervals for
each domain: race by sex for each age class by county, and
because they are very smilar across domains we have
presented in Table 2 the average of the end points of the
credible intervals over county for black females only. The
intervals for the FPM across the models are very similar.
However, those for the FPP are very different. The intervals
for the pattern mixture model and its ignorable version are
similar except for age class 2-4. This is expected because
these models express a linear regression of the logarithm of
the odds of responding on age. The intervas for the FPP
under the two pattern mixture models are essentidly the
same because they have the same relation with age, race,
sex and ther interaction. The intervals for the ignorable
version of the sdection mode are al the same over age
because in the response part of this model both age and BMI
are ignored. We note that the intervals for the selection
mode have forms similar to the pattern mixture model and
itsignorable version. As theintervas indicate, the FPM and
FPP increase with age.

5. A SplineRegresson Modd

We now address the issue associated with the box plot in
Figure 1. We have afurther look at the observed data. A box
plot of observed BMI values versus age shows that BMI is
roughly constant for ages 2-8, then rises roughly linearly
for ages 8-13, and finally rises very dowly for ages 14-19.
This apparently important feature is not included in the four
models. Thus, in this section we attempt to exploit this
feature using a spline regression model.

We have used Part 1 of the selection moddl, and for Part
2 we use ajoin-point regression model. Generically, letting
c"=0ifc<0and c" =cif c>0, wetake

X = Qi + 0y (8 —8)" + 04 )ay; —137 +¢; ©
where in the spirit of our four models
Oyj = Z; 0y +Vy, k=0,1,2.
In (9) we have taken
2 idd 2
g |03 ~ Normal(0, 63)

and motivated by our earlier result (the v, are
uncorrelated), rather than a trivariate normal density on
Vv, = (Vy;, Vi, Vg ), We have taken

idd
v, |67 ~ Norma (0, 62), k=0,1, 2.

The distribution assumptions on the hyper-parameters
remain unchanged.

We have computed the deviance measure for the spline
model; see Table 1 for the other four models. For this model
G=129 and P=107 compared with G=118 and
P =135 for the selection model. That is, D,y =236 for
the spline regresson modd and D,y =253 for the
selection model. Thus, the spline regression mode shows an
improvement over the origina selection model.

In Figure 2 we present box plots of DRES versus age.
Thisis a much improved plot over the one for the selection
model (see Figure 1). Observe that the medians fluctuate
about 0 with very little variation. The box plots for ages 2, 3,
4,5, 6 and 7 are alittle less variable than the others. We also
fit the quadratic join-point mode in which we replace (9) by

X =g+ 0y (8 —8)" +0,{(a; —13)} + g

with all other assumptions remaining unchanged. This
model did not show any substantial improvement over the
dternative model specified by (9), which we retain without
further refinement.

Table?2

Comparison of the Four Models Based on the Average Over All Counties of the End Points of the 95%
Credible Intervals for the Finite Population Mean BMI (FPM) and Proportion (FPP) Responding for Black Females

Model 2—4 5-9 10—14 15—19
SEI FPM (14.80, 16.07) (17.09, 18.58) (19.63, 21.61) (22.40, 25.19)
FPP (0.73,0.79) (0.73,0.79) (0.73,0.79) (0.73,0.79)
SE FPM (1555, 16.21) (17.49, 18.36) (1952, 20.92) (21.74, 23.91)
FPP (0.66,0.79) (0.71,0.81) (0.75, 0.84) (0.78,0.87)
PMI  FPM (14.75, 16.10) (17.04, 18.59) (19.59, 21.55) (22.42, 25.09)
FPP (0.49, 0.70) (0.72,0.84) (0.84, 0.94) (0.90, 0.98)
PM  FPM (14.96, 15.79) (17.16, 18.38) (19.61, 21.45) (22.37, 25.07)
FPP (0.49, 0.70) (0.73,0.84) (0.84, 0.94) (0.90, 0.98)

Note: SEl isignorable verson of the selection modd, PMI isignorable version of the pattern mixture model,

PM is pattern mixture model, and SE is selection modd.
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Figure2. Box plotsof the cross-vaidation resduds (DRES) by
age for the spline regression model

In Table 3 we compare the FPM for the selection models
(regression without splines and regresson with splines).
Again we average the end points of the 95% credible
intervals over dl counties. The intervals overlap suggesting
similarity between the model without splines and the one
with them. However, there are some exceptions. The largest
difference between the intervals occur for individuds age
15-19 years old. In general, the spline model provides
higher precision. For example, for age 10-19 the intervals
for the spline moded are contained by those for the model
without the splines.

6. Conclusons

To analyze BMI datafrom NHANES 11 by age, race and
sex within each county, (a) we have extended the normal-
logigtic regression modd to a hierarchical Bayesian
selection model, and (b) constructed a pattern mixture
model and two ignorable nonresponse models to assess
sengitivity to inference. A deviance measure shows that
among the four models, the selection modd is the best, and
a crossvdidation analysis shows that these modds fit
roughly equally well.

Table3
Comparison of the Two Selection Models (Regression Without Splines and Regression with Splines) using the Average
Over al Countries of the End Points of the 95% Credible Intervals for the Finite Population Mean BMI by Age, Race and Sex

R-S 2-4 5-9

10-14 15-19

BF No Spline (16.26, 16.92)

(16.44, 17.10)

(19.62, 21.41) (2135, 25.62)

Spline (15.65, 16.31) (17.62, 18.41) (19.70, 20.91) (21.95, 23.82)
BM  NoSpline (16.10, 16.76) (16.26, 16.92) (18.83, 20.55) (20.45, 24.53)
Spline (15.68, 16.32) (17.32, 18.11) (19.03, 20.21) (20.84, 22.61)
OF  NoSpline (16.39, 17.00) (16,56, 17.17) (19.48, 21.19) (21.16, 25.39)
Spline (16.01, 16.60) (17.77, 18.54) (19.62, 20.79) (2161, 23.38)
OM  NoSpline (16,53, 17.14) (16,67, 17.29) (19.22, 20.95) (20.83, 24.98)
Spline (16.16, 16.74) (17.74, 1851) (19.38, 20.55) (2113, 22.87)

Note R-Sisrace-sex: BFisblack femde BM isblack mae; OF isnon-black female; and OM isnon-black mae.
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Ancther contribution is the identification of a common
deficiency in the selection model, the pattern mixture model
and the two ignorable models. Based on the observed data,
we have found that there is a dynamic relationship of BMI
with age. Thus, we have further extended the selection
modd to include three linear splines. The cross validation
andysis shows that there is an improvement over the
sdlection modd, and in fact, the deviance measure shows
that the linear spline regression modd is the best among the
five modéls.

Our study on obesity is one of the key contributions in
this work. The linear spline regresson of BMI on age
adjusting for race and sex, gives a better fit and improved
precision than the selection modd without splines. It is not
easy to construct a model that is satisfactory for all aspects
of the NHANES 11 data simultaneously. We have been able
to do so for children and adolescents. BMI increases
substantially with age; race and sex contributing negatively
to this increase; there is relatively less increase for white
males. In genera, the effects of race and sex are relatively
minor. There is some varidion across the thirty five
counties.

Appendix A
The Pattern Mixture M ode

For Part 1 of the pattern mixture model the response
depends on age, race and sex, and the interaction of race and
sex through the logigtic regression

ind .
r; |B; ~ Bernoulli
{eﬁoi+ﬁli3ij+ﬁziZij1+33i4jz+ﬁ4i4j3 /(l+e 0i+ﬁ1iaij+ﬁziZijl+B3i4j2+B4i4j3)} (Al)

i=1...,1,j=1...,N. Now, |etting, B, =
(Bois By s Bais By Byi), note that while the vector B; has
p=5 components, the corresponding vector in (4) has two
components. Analogousto (4) we take

B 10, A < Normal (0, A), (A.2)
and for the prior distribution,
0 ~ Normal(6©, A)
and A~ Wishart{ VOA@)?, vO} vO > p, (A3

where 09, A9 A© and v are to be specified. Part 2 of
this model for BMI incorporates a dependence on the
responseindicators, letting w;, =1, w, = a;,
1
X; = Z (Zjo, +1Vy)w, +6;,1;, =01,
t=0

iid
g |03 ~ Normal(0, 62). (A.4)
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The distributions on the (v, Vv;) ae the same asin (7).
The prior digtributions are exactly those in Part 2 of the
selection model (i.e., see (6) and (7)).

We take V@ =2p, a vaue that indicates near
vagueness, maintains propriety and permits stability in
computation. We show how to specify parameters like
0, A9 g A9 t=123 A? in Appendix C.

Appendix B
Metropolis-Hagtings Algorithm for Fitting the
Selection M odél

For the nonignorable nonresponse selection model the
joint posterior density is
POX*™,6%,,B,v,0,ps,po |X*")

lu_[ lr_[ 1 e—zfig(m4z;j<a1+aia2>+voi+v1iaj}>2 Por By
fe} 1+eB0i +BuiX;

i<1 |j=t O3
l'_I ﬁ 1 _Tig(xij ~{Z (0 +850,)+Vo +vy 3 })° 1
X —e —_—

i=1 | j=r+1 (O 1+eﬁ°‘ B
1'—[ 1

i1 6,0,4/1-p?

1| [ B o T_zp [smfeo ][Be][ﬁ e]

e Z(l—P%)L Oy ! Oy O3 O

I S

a
5 (1 2™ —2% ~L0-0@ya@1(9_0©)
O 2
X I I > e e

2 1, _a(cl))'A(D)’l (@,-al®)
2 k k k k k
X I I e .

k=1

(B.2)

Let Q denote the set of parameters B, 0, v, a,
63, ¥y, ¥, and x®*™ where v, =(c},05,p,) and
v,= (05,0%,p,). Genericdly, let Q. denote Al
paameters in Q except a; for example, Q=
0,v, 0,62, v, y,, x®™), s that the conditiona
posterior density (CPD) of B is denoted by
p(B1Q,. x©"). To perform the Metropolis-Hastings
agorithm, one needs the CPD for each parameter given the
othersand x". Here we give asketch of the algorithm.

The CPD for each of the parameters 0,v,a and o5 is
easy to write down. But we need Metropolis steps for the
CPD’sof B, y,, y,, and x©&™,
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Conditioning on Q,
independent with

the parameters B,,...,B,, ae

(Boi+B1i %5 } ,E(ﬁi—e)'Ail(ﬁi*B)

CONE o ) B (VP
p(BI |X ) H {l e(Bo.*BuXu) xe

where

2
A = G P10,0;
1= 2
P16.:0, G,

and x;,i=1...,1 and j=r+1...,n aeto be predicted;
see below. We use a technique based on logigtic regression
to obtain a multivariate Student’s t proposa density in
which tuning is obtained by varying its degree of freedom.

The method to draw from the CPD’'s of w, =
(62,05,p,) and y, =(c3,05,p,) isthe same. The CPD
of y, is

i pf1,1
1 J 2 e 2l 67 o2
0 0
5
AN 22N AN
X—l e 2(1-p3) {ci ZHVO' o405 Zi:f’“‘vl' o2 Zizlvl'
(l_pZ)IIZ
2

We have used the Fisher's z transformation (see Ruben
1966) to obtain a proposa density associated with hormal
distribution for log{p, /(1-p,)} and gamma distributions
for 65 and o:.

Findly, we consider the Metropolis step for drawing
X®MNQ .y, X7 We note that in this CPD,
%, i1=L...,1, j=r+1...,n, aeindependent with

P 1€, X&) o {

2[‘, {Zl (‘11+a11“z)+vo| V1|au}]
p(xl |£2 X(S r)) e
] ij?

[ o |2

We have congtructed a proposal density using least squares
techniques. We note that the proposa densty
Norma (z; (o, + a;a,) + Vo + V38, c5) did not perform
well (see Chib and Greenberg 1995).

Appendix C
Specification of Hyper parameters

We discuss how to gspecify the hyperparameters
09, A9 and (a2, T{?), k =1, 2, associated with 6 and
a,, k=12 inthe sdection model.

First, consider (0, A?). For i=1,.. ,|,J 1..,n

fit the logistic regresson model T; < Bernoulli
{5 (14 PP \where x; ae Obtained by
prediction (see Appendix A). Letting B;,i=1,...,1 denote
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tpe leest sguares edtimators, we assume that
B, " Normal (0@, A9) toget 0© =1/1 3, . and

xo =ﬁ§ B -00) B -00) (€
andweset A¥ =, A%, where k, isto be selected.

Next, we consider how to specify (ol?, (), k=1,2.
Wefit x; = Z; (0, +0,8;) +§;, where g; isthe age of the
j™individua inthe i™ county, i=1...,1,j=1...,n to
get least squares estimators, a = (a.,, 2) and its covariance
matrix T©. We set a® =a,, and T? =, 1%, where

9, k=12 is the corresponding block matrix of
F(O), k=1,2 and x, isto be specified.

We have experimented with x, in (C.1). We usd
K, =100 to provide a proper diffuse prior; a value of

=1,000 did not change our predictions. Similarly, we
used «, =100.
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Towards Nonnegative Regression Weightsfor Survey Samples

Mingue Park and WayneA. Fuller *

Abstract

Procedures for constructing vectors of nonnegetive regression weights are considered. A vector of regression weights in
which initia weights are the inverse of the approximate conditional inclusion probabilities is introduced. Through a
simulation study, the weighted regression weights, quadratic programming weights, raking ratio weights, weights from logit

procedure, and weights of alikelihood-type are compared.

Key Words: Raking ratio; Maximum likelihood; Quadratic programming; Simple Conditionally Weighted (SCW)

estimator.

1. Introduction

In survey sampling, information about the population is
often available at the analysis stage. One method of using
this information is through regression estimation. There are
anumber of ways to construct a regression estimator of the
population mean or total. One regression estimator of the
mean is

Vg =W v =V, + Ry -%) B, (@)

i=1

where
-1
W= oy +(Xy —77:)[2 X ¢}leiJ X 0, ()
j=1

i‘,ni_l(Yi! X;) = Zn: o; (Y, %),

i=1

(Tes %o) = [ZnJ
ﬁ: [Z—‘i Xi,q)iilxij i‘ixi,q)iil i

-1
n
-1 -1
j=1

® = diag(¢y;, ..., $,,) IS @ nonsingular diagonal matrix,
the m;'s are the sdection probabilities and X, is the
population mean of x. A possible choice of ¢;" is a;. A
review of the use of such information in regression esti-
mation for sample surveysis given by Fuller (2002).

It iswell known that regression weights that are used to
define aregression estimator such as (2) can be very large or
(and) can be negative. If the regression weights are to be
used to estimate a finite population total in a generd pur-
pose survey, it seems reasonable that no individual weight

should be less than one. Also, it seems reasonable, on
robustness grounds, to avoid very large weights.

There are several ways to construct regression weights
with a reduced range of values. Huang and Fuller (1978)
defined a procedure to modify the w, so that there are no
negative weights and no large weights. Husain (1969) sug-
gested quadratic programming as a procedure to place
bounds on the weights. Quadratic programming and a
number of other procedures build on the fact that the
weights can be defined as values that optimize some
function. Deville and Sarnda (1992) considered seven
objective functions that can be used to construct weights.
They suggested objective functions that can be used to
produce weights which fall within a given range. Deville,
Sarndal and Sautory (1993) introduced the program,
CALMAR, written as a SAS macro that can be used to
caculate weights corresponding to four different objective
functions when auxiliary information in the survey consists
of known marginal countsin afrequency table.

Another modification of regresson weights is to relax
some of the restrictions used in constructing the estimator.
Husain (1969) considered modifying weights for a simple
random sample from a normd distribution. He derived the
weights that minimize the mean square error (MSE) of the
resulting estimator. Barddey and Chambers (1984) con-
sidered an estimator based on an objective function and the
division of the auxiliary variable into two components. They
sudied the behavior of the egtimator from a mode
perspective. Rao and Singh (1997) studied an estimator in
which tolerances are given for the difference between the
final estimator for part of the auxiliary variables vector and
the corresponding elements of the population vector.

In this paper, we consder different types of regression
weights including a procedure based on Tillé's (1998) con-
ditional selection probabilities. The gpproximate conditional

1. Mingue Park, University of Nebraska, 103 Miller Hall, Lincoln, NE, 68588-0712, U.S.A.; Wayne A. Fuller, lowa State University, 221 Snedecor Hall,

Ames, 1A 50011-1210, U.S.A.
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inclusion probabilities are used to compute regression
weights that are positive for most samples. These regression
weights are compared to raking ratio weights, to quadratic
programming weights, weights from logit procedure, and to
weights based on a likelihood-type objective function.

2. Maximum Likd&ihood and
Raking Ratio

Congder atwo-way table with r rowsand ¢ columns.
The population cell Uj contains N; dements;, i=1 ...,
r, j=1..,c. Assume margina counts N,, N, ae
known. The population characterigtics of interest are the
N; or, equivalently, p; = N N;. For a simple random
nonreplacement sample of size n, Deming and Stephan
(1940) suggested a raking ratio procedure to get the solution
for the cell frequencies. See dso Stephan (1942). If we
assume the sample is a random sample from a multinomia
distribution defined by the population entries in a two way
table, we can congtruct an estimator using the maximum
likelihood procedure.

Deville and Sarndal (1992) defined a class of cdibration
estimators, Y, , of the population meanof y as

Yea :Zi: WY, ©)

where the w’'s minimize the objective function
Y1 G(w, o) subject to constraints

and G(w;, a;) isamesasure of distance between an initial
weight o; and a final weight w;. The raking ratio and
maximum likelihood estimators of the population cell
fraction, Pi belong to the class of cdibration estimators.

The raking ratio weights for the population cdll fraction,
with a smple random sample, can be obtained by
minimizing

Il
><I

4)

Zn: W, Iog(ﬂ_kl)—wk +n7, (5)
k=1 n

subject to the congtraints (4) with
Xe =0y, ooy 0,5 04, oy O), (6)

where §, =1 if k™ dement belongs to the i"™ row and
8, =0 otherwise, and &, =1 if k™ element belongsto the
i™ column and 8, =0 otherwise. The raking ratio
estimator for the populatl on cell fraction p; isthe estimator
(3) where y, =1 if the k™ elementbelongsto cdl ij and

Yy, =0 otherwise.
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For the maximum likelihood estimator of the population
fraction, with a ssmple random sample, Deville and Sarndal
(1992) suggested minimizing

Zn:—n‘llog( j+wk—n @)
k=1
subject to (4) with x defined in (6).

Chen and Sitter (1999) suggested a pseudo empirical
likelihood estimator. They defined the population likelihood
of y, as

> logw, . ®

where w; |, isthe density at observation y;. With asample
of size n, they suggested the pseudo empirical likelihood
estimator of the form

Ve = z WY, ©
i=1
where w, 'sare obtained by minimizing the function

- n;* logw,, (10)
i=1
under the redtrictions (4). The resulting w, are equal to
those obtained by minimizing (7) with = N=; under the
restrictions (4).

Deville and Sérnda (1992) showed that the raking ratio
and maximum likelihood egtimators are approximately
equal to aregression estimator of the form (1), and, hence,
have the same limiting distribution as the regresson
edtimator. Weights for the raking ratio and maximum
likelihood estimators are nonnegative if the solutions for the
weights exist.

3. Weighted Regression Using
Conditional Probabilities

Tillé (1998) suggested the use of approximate
conditiona inclusion probahilities, conditioning on the
Horvitz-Thompson estimators of auxiliary varigbles, to
compute an estimator for the population mean of the study
variable. His approximation can be extended to produce
regression weights that are nonnegative with high
probability.

Assume that the vector of population means of auxiliary
variables, X, , is known. Consider the Horvitz-Thompson
estimator of X,, given by

% 1
K=y 2 a

i=1
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where X; = (X, ., X,) ad m is the unconditional
inclusion probability. Tillé (1998) introduced the simple
conditionally weighted (SCW) estimator,

i |XHT

Where T, IS the conditional inclusion probability of the
" element conditioni ng on X,;. To congtruct the SCW-

estl mator of Y,, the conditional inclusion probability

isrequired. If X,,; takesthevalue t, wehave

P{X, =t|i e A}
P{X,r =t}

where A isthe set of indicesfor the sample elements.

In order to compute the conditiona inclusion probabil-
ities, it is necessary to know the probability distribution of
X, unconditionally and conditionally on the presence of
each unit in the sample. Except for some particular cases,
this probability distribution is very complex. For this reason,
approximation of the conditiona inclusion probability is
considered.

Under the assumption that X, has an approximately
normal distribution unconditionaly and conditiondly on the
presence of each unit in the sample, the conditiona inclu-
sion probability (13) can be approximated by

iRy

: (13)

Tz, =T

12 172
||><HT - |2><><| |zii,(i)|
exp{0.5 (G5 —Gxx, (|))} (14)
where 3o = Var{X, [F}, Zse oy =Va{X,rIF, ie A,

4

_XN)Z Xur =Xy’

XX =(
_ _ 1 _ _ ,
Gz iy = Kur =Xy y) Zxx. iy K =Xy, y) s

Xy,o) = E{Xyr [F,ie A} =

(Nm)™ %, +N™ i (m, ;)7 my X,
=
A is the st of indices appearing in the sample and
F={y,, ..., Yy} isthefinite population. Tillé (1998) gives
anexpression for X, ) for the general case.

Assume the design covariance matrices X, and X5 i
are positive definite and assume the vector of auxiliary
variables is normally distributed. Tillé (1999) showed that
the SCW-estimator defined in (12) with the approximate
conditional inclusion probabilities of (14) stisfies

Yor = Yur + (X =Xpr) By + Oy (nh) (19

= Vg + O, (1), (16)
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where
Bn =Zix Zxy»
Vieg = Yo + (K = Xer) B,
=313, =(X® X)X Dy,
X=X, o0 X)), Yy =(Yr o Y,), the ij™ edement of

@' is N%(m m ;) *(m; —m; m;), Xy IS the design
variance of X,;r, 2., isthe design covariance of X,; and
Yurs ZW is the Horwtz-Thompson variance estimator of
X7, and Z is the Horvitz-Thompson estimator of the
covariance of XHT and Y.

Given a complex design, a number of the quantities in
(14) are difficult to compute. However, approximations
giving the same large sample properties for the estimator are
relatively easy to compute. We replace >, and X

with estimators, replace X ;) with X +d, , define

XX, (i)

Mg =2 (Nm) ™ +d v, (17
ie A
and assume
Var{n(My, —M )} =0(n?), (18)
d, =0, (n™), (19)
where d, is a function of the sample and My is a

population quantity. Often My is the population covan-
ance matrix Xy, but this equaity is not required in order
for the estimator to be well defined. In many cases one can
compute d, asamultiple of the jackknife deviate. Also in
many stuanons an adequate vaue for the estimator,
iy OF Tax. gy iSN(N— 1)3,.. We write our gener-
dization of (14) as

~ -1/2

1/2
Tl ‘

=TT

XX, (|)‘

XX

exp{05(G 5 ~Cya )t (DO

where
G s = (Rur =Xn) ik R =Xy )’
Gix. ) = Reur =Xy =0y ) Tk iy Ry =Xy =, )’
Let the estimator (12) congtructed with the T, S of (20) be
XN 21)
i=1

An approximate conditional inclusion probability with a
simple random sample and asingle auxiliary varigbleis

Statistics Canada, Catalogue No. 12-001-XIE
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(in _iN)2 _ (Xn _XN _dxi)z
62 62, 0] ,

d, =[n(N=D](N =n) (x - Xy),

R T e
n“(N-2) (N-1) n

where

62 =(M"-N"s,

X

and

S=(-97Y (x-%)"

Inthiscase, d, =Xy ¢ — Xy ad Mgy =Cov(Xyr, Yur)-

The SCW-estimator (21) with the approximate
conditiona inclusion probahilities is not calibrated, that is,
the estimator (21) for the mean of the vector of auxiliary
variables is not the vector of population means. It is
relatively easy to standardize the probabilities so that they
sum to one or sum to the stratum fraction for dtratified
sampling. To construct a calibrated estimator for the genera
case, we suggest computing the regression estimator with
[Z0_1 715, ] T 5, @ initid weights. The suggested
edimator is

ywreg = Vc + (YN _ic) lgc,l
=D WY, 22)
i=1
where

(Fer %)= 25 (30 %),

(BBl <[ E ot | [ S 2]

+(YN _Yc) |:i O('j (Xj _ic), (Xj _Yc):| Qi (Xi _ic),l

ilx, IS the approximate conditiona inclusion
probability of (20). We assume the vector of auxiliary
variables contains one so that the estimator is location
invariant.
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The estimator (21) is approximately equal to aregression
estimator and estimator (22) is also approximately equal to
the same regression estimator.

Theorem: Let a sequence of populations and samples,
{Fn, Ay}, satisly
(Yir» Xur) = (Uns XN)zop (nillz)- (23
Assume that the sequences of estimated covariance
matrices, 255 and 25 ), stisfy
[D—llzi D—llz]
%%, (i)
~ -1
_[D_llzz:yy D—l/Z] =Op (n—l)' (24)

where D denotes a diagonal matrix having the elements of
the diagondl of X5 onitsdiagond. Let d, beafunction
of the sample satisfying (19) and assume (18) holds.
Assume the sequence of Horvitz-Thompson variance
estimators satisfies

-1

Var{n[veCh(izz, HT_ZZZ)]} = o(n™), (29)

where z, =(x;, y;) and X,, is postive definite. Assume
E{m 7, } is bounded, where %, IS defined in (20).
Then, the SCW—estimator y - of (21) satisfies

Yor = Yur + (X —Xpur) By +Op(n_l)

= Yt + (Xy —Xiyr) é"'op(nil):

where 0=3% M, and 8, = X2 M 4.

If Var{X" ,m;'}>0, assume x; contains one as an
dement. Assume M, =3... Then the weighted
regression estimator of (22) satisfies

Yareg = Yir + (X —Xyr) 9+Op(n_l)-
For proof, see the gppendix.

To illusgtrate the nature of the different types of regression
weights, we selected a simple random sample of size 40
from a normal population with mean zero and variance one.
The sample mean is —0.614 and the population mean is
zero. The weight for the regression estimator is given by (2)
with o, =¢;' =n"". The weights for the raking ratio and
MLE are obtained by minimizing the objective functions (5)
and (7), respectively, under the restriction (4). Weights for
the SCW-weighted regression estimator are given in (22).
The weights are plotted against the sample x vaues in
Figure 1. Five of the simple regression weights are less than
zero because of the large discrepancy between the sample
and the population means. All weights for the SCW-
weighted regression estimator, MLE and raking ratio are
nonnegative. Figure 1 shows that the behaviors of raking
ratio and SCW-weighted regression weights are similar and
that MLE has an extremely large weight in this sample.



Survey Methodology, June 2005

Table 1 contains selected weights for the smallest x values,

x values close to the sample mean, x values close to the
population mean, and the largest x vaues. For the x—
values farthest from the population mean MLE gives the
largest weights. For x—values near the sample mean the
ordinary least squares weights are close to n™ while the
other weights are lessthan n™*. The MLE weights are close
to n* for x—values close to the population mean while the
other weights are larger.

Tablel
Selected Regression Weights for Illustrated Example
X Weights multiplied by n = 40

Reg W. Reg Raking MLE

—2103 —0.56 0.12 0.16 0.40
—-1941 -0.40 0.12 0.20 0.40
-1.727 -0.16 0.20 0.24 0.44
-0.710 0.88 0.68 0.68 0.68
—0.670 0.96 0.72 0.68 0.68
—0.468 1.16 0.88 0.84 0.76
—0.103 152 1.28 124 0.92
0.021 1.68 144 140 1.00
0.097 1.76 156 152 1.08
0.628 232 2.60 2.60 184
0.662 2.36 2.68 272 192
1.237 2.96 4.60 4.88 9.12

Simulation Study

To compare the dternative methods of congtructing
regression weights we conducted a simulation study. A tota
of 30,000 simple random samples of size 32 were sdlected
from a y? digtribution with two degrees of freedom. The
parameters being estimated are those of the infinite
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generating mechanism. Let x be the value for the i
sampled element. Six estimation procedures were
considered.

1. Ordinary least squaresregression (OLS)

2. Quadratic programming with upper and lower
bounds (QP)
Weighted regression with SCW weights (SCW reg)

Maximum likelihood objective function (MLE)
Raking objective function (Raking reg)
Logit procedure with upper and lower bounds (L ogit)

o g~ W

The weights for the OL S estimator were calculated by (2)
with o, =n"'. The quadraic progranming weights
minimize Y"_, w* subject to the constraint 0< w; < 0.065
for dl i and subject to condraints (4). The quadratic
programming procedure is equivalent to the truncated linear
method of case 7 of Deville and Sérnda (1992). Weightsfor
the SCW weighted regresson were calculated by
minimizing >"_; o W’ subject to congraints (4), where
o; isdefinedin (22). The weights for raking and maximum
likelihood were obtained by minimizing the objective
functions (5) and (7), respectively, under the redtriction (4).
Weights calculated by the logit procedure minimize the
function Y'_, G(nw,) subject to congtraints (4),where

G(”Wi)=a{(nwi)ln(nvvi)+(u-nwi)|n[u—n;viﬂ,

a
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Figure 1. Comparison of four setsof weights.
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if O0<nw, <u and - dsewhere, a=u(u-1~", ad
u=2.08. Notethat the solution for the logit procedure, if it
exigts, satisfies the bound redtrictions 0<w; <0.065 for all
i. Thelogit procedure was introduced as a case 6 in Deville
and Sarndal (1992). As the upper bound for the weight,
0.065 was used so that 3,026 samples (approximately 10%)
have a least one raking regresson weight greater than
0.065. In 99 samples among 30,000, no solution for the
quadratic programming and logit procedure is possible
because no feasble point satisfies (4) and the bound
restriction. For those 99 samples, the maximum of the OLS
regression weights was used as the upper bound for the
quadratic programming and logit procedures.

Table 2 shows the average of the sum of squares for the
six weights. The average weight is 1/32 = 0.03125 for every
estimator. The least squares procedures have the smallest
sum of sguares of the weights because this is the objective
function for those procedures. The least squares procedures
also have adightly smaller range in the sum of squares. One
percent of the least squares samples have a normdized
mean of squares greater than 1.401 while one percent of the
mean of squaresfor raking are greater than 1.441.

Table2
Monte Carlo Average of the Sum of Squares of the Weights

OLS QP SCW MLE Raking Logit

Reg Reg
1043 1.044 1.045 1.053 1.045 1.045

Averageof w’w (x32)

Table 3 contains properties for the minimum of the
weights. Maximum likeihood has the largest average
minimum weight while the least squares procedures have a
smaller average for the minimum weight. The variance of
the minimum weight is largest for the ordinary least squares
procedures. Note that QP permits weights that equal the
lower bound of zero.

Table3
Monte Carlo Mean, Variance and Quantiles
of the Minimum Weight

Quantiles (x32)

Mean Variance
Procedure (x102) (x105) 0.01 010 050 090 0.99
OLS 222 646 -010 034 079 096 1.00
QP 221 6.32 000 032 079 09 1.00
SCW Reg 244 358 022 049 084 097 0.99
MLE 245 279 033 052 083 097 1.00
Raking Reg 2.36 381 020 045 081 097 1.00
Logit 2.25 5.23 009 036 078 0.9 1.00

Among the procedures without bound restrictions on the
weights, the ordinary least squares procedure has smaller
maximum weight on average and much smaller variance for
the maximum. See Table 4. The SCW-weighted regression
has a smaller fraction of very large weights than MLE or
raking ratio but a higher fraction of large weights than the
ordinary least squares procedure. The bounded QP and
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Logit procedures have smaler mean and variance for the
maximum weight than the procedures with no upper bound
restrictions.

Table4
Monte Carlo Mean, Variance and Quantiles
of the Maximum Weight

Quantiles (x32)

Mean Variance
Procedure (x102) (x105) 001 010 050 0.0 0.99
OoLS 425 17.35 100 103 120 192 293
QP 417 1191 100 103 120 192 208
SCW Reg 4.56 26.42 1.03 107 127 212 347
MLE 4.75 56.13 100 104 125 231 472
Raking Reg 4.46 30.25 100 103 123 209 363
Logit 4.13 10.23 100 103 121 182 208

To evauate the performance of the procedures when the
linear model does not hold, we considered estimation of the
percentiles of the distribution function of x. Table 5
contains the Monte Carlo bias of the percentile estimators
wherethetable entries are

[min{P, (L P)}] [ E{P} — P]x100,

and P is the percentile. For example, the Monte Carlo
edimated relative bias in the ordinary least sguares
estimator of the 0.01 percentile is —-7.75%. The ordinary
least squares estimator has the largest biases in estimating
the population percentiles, among the procedures without
bound restrictions. The MLE has the smallest bias for al
percentiles except the 75", 95" and 99", where the
SCW-weighted regression estimator has the smallest bias.
For samples of size 32, many samples contain no
observation greater than the 99" percentile. The QP and
Logit procedures have larger bias than other procedures
except for the 75" percentile. The biases of the QP and
Logit procedures are relatively large for the lower
percentiles.

Tableb
Monte Carlo Standardized Bias in Percentile Estimators
Percentile Procedure

OoLS QP SCWReg MLE RakingReg Logit
0.01 -7.75 -843 -288 -213 -470 -830
0.05 727 —-7.95 -258 -182 -430 -7.85
0.10 -6.66 -7.31 -227 -157 -391 -7.26
0.25 -525 -582 -179 -125 -313 -5.89
0.50 -321 -346 -137 -116 —-218 -353
0.75 -230 -207 -160 -221 —-225 -1.78
0.90 460 531 127 022 262 5.68
0.95 1275 13.33 601 641 952 1315
0.99 3294 32.36 19.03 22.66 26.65 30.03

Table 6 contains the relative MSE of the percentile
estimators where the table entries are

[min{P, (1— P)}]?[ E{P — P}?]x100.

Thus the relative mean square error of the OLS estimator of
the 0.01 percentile is 283.27%. Although the OLS estimator
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of the 0.01 percentile had the largest bias OLS has the
smallest mean square error for the 0.01 percentile among the
procedures without bound redtrictions. The QP, OLS and
Logit procedures are superior for the extreme percentiles
while the other procedures perform better for the middle
percentiles.

Table6
Monte Carlo Relative M SE of Percentile Estimators
Percentile Procedure

OLS QP SCWReg MLE RakingReg Logit

0.01 28327 28250 309.23 31158 296.37 282.76
0.05 5391 54.23 5741 57.07 5497 54.06
0.10 2550 25.97 2640 25.79 2526 25.80
0.25 800 841 777 123 742 841
0.50 199 207 18 171 183 212
0.75 365 3.68 362 3.66 363 367
0.90 1450 14.60 1425 1457 14.36 14.56
0.95 3940 38.65 4099 41.66 39.93 37.94
0.99 20017 19624 23571 216.22 205.85 194.33

In 562 of 30,000 samples a least one of the OLS
regression weights is negative. In 17 of the samples at least
one of the originad SCW regression weights was negative.
The use of quadratic programming with the OLS objective
function (QP) to produce weights greater than or equal to
zero and less than 0.065 increases the average sum of
squares by less than one percent. See Table 7. Using
quadratic programming to bound the SCW regression
weights (SCW (QPL)) by zero increases the average sum of
squares very little because there are so few weights that are
changed.

Table7
Monte Carlo Average of the Sum of Squares of the Weights for
Samples with at Least One Negative OLS Weight

SCW SCW Raking
OLS QP-Reg(QPL) MLE —Reg
1.208 1.217 1.226 1.227 1.342 1.242

Averageof w’ w (x32)

Table 8 gives the Monte Carlo M SE for the 562 samples
with negative ordinary least squares weights. The quadratic
programming procedure is superior to other nonnegative
weight procedures for the 0.01 percentile and is inferior for
the 0.99 percentile. Of the 562 samples, 497 had a sample
mean greater than the population mean. Recall that the study
population has an exponentia distribution. Because the
weight on the largest observation is zero in the 497 samples
there is a 100 percent error in the quadratic programming
estimator of the 0.99 percentile for most of the 497 samples
with a sample mean greater than the population mean. In
sampling from a finite population the bound on the weights
would be greater than or equal to N and the MSE of the
quadratic programming procedure for the 0.99 percentile
would be reduced.

Quadratic programming is superior to the other calibrated
procedures for the 0.01 percentile in samples with negative
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OLS weghts. Reking regresson and SCW-weighted
regression are superior to MLE for the 0.01 and 0.05
percentiles. This is because MLE often has the largest
maximum weight.

Table8

Monte Carlo Relative M SE of Percentile Estimators
for Samples with at Least One Negative OLS Weight

Percentile Procedure

OLS QP SCW(QPL) MLE RekingReg
0.01 28752 29111 35058 461.80 344.06
0.05 76.04 70.58 7580 8371 7250
0.10 4480 40.74 3031 3884 36.05
0.25 2024 19.14 14.72 9.91 12.56
050 503 531 3.65 2.26 3.35
0.75 502 453 3.36 4.24 3.45
0.90 2377 2369 2004 1880 20.49
0.95 51.54 46.04 3079 28.28 3254
0.99 206.33 90.08 3040 5754 43.49

In 3,026 of 30,000 samples, at least one of the raking
regression weights is greater than 0.065. In 2,152 samples,
a least one of the OLS regression weights is greater than
0.065, and in 3,209 samples & least one of the SCW
regresson weights is greater than 0.065. The use of
quadratic programming with the OLS objective function to
produce weights in (0.000, 0.065) increases the average sum
of squares by 1.5 percent. Using quadratic programming to
bound the SCW regression weights by 0.000 and 0.065
increases the average sum of squares 0.8 percent. See the
column for SCW (QP) of Table 9.

Table9
Monte Carlo Average of the Sum of Squares of the
Weights for Samples with at Least One Raking
Reg Weight Greater than 0.065

SCW SCW Raking
OLS QP -Reg (QP) —Reg Logit MLE
1210 1.228 1.221 1231 1.228 1.232 1.290

Averageof w’w (x32)

Table 10 gives the Monte Carlo relative MSE for the
3,026 samples with raking regresson weights greater than
0.065. The quadratic programming is superior to SCW (QP)
and Logit for the 0.01, 0.95 and 0.99 percentile and the
Logit procedure is superior to quadratic programming for
other percentiles.

Table 10
Monte Carlo Relative M SE of Percentile Estimators for Samples
with at Least One Raking Reg Weight Greater than 0.065

Procedure
SCW SCW Raking
OLS QP —-Reg (QP) —-Reg Logit MLE
0.01 139.96 130.53 173.86 146.40 124.02 173.65 206.65

Percentile

0.05 3083 4288 3935 4169 3987 3714 4083
0.10 2631 3092 2240 2810 2888 2021 19.98
0.25 1356 17.72 1013 1569 1771 865 7.01
0.50 395 487 332 475 537 303 228
0.75 484 535 489 558 537 505 548
0.90 2798 2904 2870 2034 2932 2879 3207
0.95 7415 6754 8502 6812 6598 8313 9599

0.99 108.77 179.58 219.16 181.17 17245 212.38 226.73
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Discusson

We began the research with the conjecture that starting
with the SCW weights in a regresson estimator would
produce weights that were amost dways positive and that
the weights would have desirable properties as measured by
the ability to estimate the distribution function of x. To
some extent these results support the conjectures. The
minimum weights of the SCW regression are larger than
those of OLS and comparable to those for raking. Quadratic
programming can be used to remove the negative weightsin
the few samples with negative weights. If no upper bound is
imposed, the maximum weights for the SCW weighted
regression fall between those of least squares and raking.

It is known that al of the procedures in our simulation
study have the same order ™2 properties. Our smulation
and the study of generalized raking procedures done by
Deville et al. (1993) indicate that there are also modest
differences in smal samples. No procedure is superior with
respect to al criteria. Because of the poor performance for
the extreme percentiles, we recommend against the use of
the MLE objective function. The quadratic programming
and Logit procedure produced weights with marginaly
smaller sums of squares, marginaly smaler maximum
weights, and marginaly smaller MSE for extreme
percentiles than the raking regression. The MLE, SCW
regression and raking procedures give marginally larger
minimum weights and marginaly smaler MSE for the
middle percentiles of the x distribution than quadratic
programming and Logit procedure. The performances of
quadratic programming and Logit procedures in estimating
the distribution function of x are comparable.

Appendix

Proof. Theratio of the determinants of estimated covariance
matricesin (20) is

><>< (1)‘

=1+0,(n™) (26)

by assumptions (24) and (25). The difference Gey oy —G
is

XX, (i) XX

(XHT_XN)( %%, () A;’()(XHT_YN),
—2(Kpr —Xn) Tk o d +d Zxx w .
By assumptions (23) and (24),
exp{05[(Xr —Xy) (X% () ~Z5%) Rur — Xy ) 1} =
1+0,(n™). (27)
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Using assumptions (24) and (19), the Taylor expansion at
d, =0 gives

exp[_(iHT N)Zxx (|)d +0.5d z:x>< (|)d>g]

=1+ (XN _XHT) Zxx (|) X +Op(n71)

=1+ (Xy —X,p) Dk d,  +0,(n™). (29)
Thus, by (26), (27) and (28),

[NT,,,, 17 = (Nm) [+ (X, - XHT)ZXX W1+0, (n?).

X

By assumptions (18), (23) and (25), and using the fact that

E{7;2 } isbounded,

Yo = Yur + (X —Xr) é‘ij(rfl)
= Yur + (Xy —Xpr) Oy +Op(n71)' (29)
If one is an element of x; or Var{>_,n;"} =0, and if

My =2y, the SCW-estimator for the population mean of
vector g; = (1, Xx;) satisfies

=]

Ty Rk A =1L R)+0,(nY),  (30)

becausethe 0 for x istheidentity matrix. By (30),

(., vc)=N{i T } (Rezr Vo)
=(Xpﬁ, )‘/pﬁ)+0p(n‘1). (3D
Thus,
Vareg = Yo + Xy —Xc) Bes
= Vo + (K —Xp) Bes + (Ve = V) + (K —
=¥ +0,(n7)

= Yur + (Xn —Xpr) é+op(n_1)!

ic) ﬁc,l

by (30), (31) and (29).
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An Optimal Calibration Distance L eading to the Optimal
Regression Estimator

Per Gosta Andersson and Daniel Thorburn*

Abstract

When there is auxiliary information in survey sampling, the design based “optima (regression) estimator” of a finite
population total/mean is known to be (at least asymptotically) more eEficient than the corresponding GREG estimator. We
will illugtrate this by some simulations with dratified sampling from skewed populations. The GREG estimator was
originaly constructed using an assisting linear superpopulation model. It may aso be seen as a calibration estimator; i.e., as
a weighted linear estimator, where the weights obey the calibration equation and, with that restriction, are as close as
possible to the origind “Horvitz-Thompson weights’ (according to a suitable distance). We show that the optimal estimator
can aso be seen as a calibration estimator in this respect, with a quadratic distance measure closely related to the one
generating the GREG estimator. Simple examples will aso be given, revealing that this new measure is not always easily

obtained.

Key Words: Horvitz-Thompson estimator; Regression estimator; Survey sampling theory.

1. Notation and Basics

Congider a finite population U consisting of N objects
lebelled 1, ..., N with associated study values vy, ..., Yy
and J-—dimensiona auxiliary (column) vectors x, ...,
Xy- We want to estimate the population total t, =Yy Y,
by drawing arandom sample s of size n (fixed or random)
from U, with first and second order inclusion probabilities
n, =P@ies),n; =P@, jes), i j=1.,N The
study values and the auxiliary vectors are recorded for the
sampled objects and before the sample is drawn we assume
thatatleast t, =3, X; isknown.

This is the standard setup for a regression estimator. In
section 2 we discuss different regression estimators. the
common GREG edimator (Sarndd, Swensson and
Wretman 1992), the optima estimator (Montanari 1987,
Andersson, Nerman and Westhall 1995) and calibration
estimators (Deville and Sérndal 1992). It iswell known that
the GREG edtimator can be obtained as a calibration
edtimator. In section 3 it is shown that this holds aso for the
optimal estimator, but with a more complicated distance
measure. In the last two sections this and the optimal
edimator are illustrated, first by theoretical examples and
then by simulations.

Finaly some comments about matrix notation in this
paper: Generally, the trangpose of amatrix A is denoted by
AT and if A issquare, the inverse (generdised inverse) is
written A™(A7). We further let the column vectors
y:(yi)ies and Woz(l/ni)ies' X be the Jxn
“design” matrix of the auxiliary information from s and
finaly |, meansaunit diagonal matrix of size n.

2. Regresson and Calibration Estimators

An unbiased simple estimator of t, is the Horvitz-
Thompson estimator £, =%,y /m = y" w,. However,
more efficient estimators may be obtained utilisng the
auxiliary information, e.g., the well-known model asssted
GREG edimator, see Sarndal et al. (1992). For example,
congtructed from the assumption of a homoscedastic linear
regression superpopulation mode the GREG estimator is

fy =y Wo+(y" R XT) (X R XT)7(t, ~t)) @

=y'g, )

whee R, =w, I, {, =>,..x /=, ad

g=[ni<1+xf(x R, XT)(t, —fx»j

€S

Now, the expression (2) for the GREG estimator is
interesting since we also have that

x"g=t,, ©)

which is called the calibration equation. Thisbringsusto an
dternative possible derivation of the GREG estimator
according to Deville and Sarndal (1992). Suppose that we
seek an estimator y'w of t, with avector w of sample-
dependent weights (w,),. s, which respects the corre-
sponding calibration equation, while dso minimising the
distance between w and w, according to the quadratic
distance measure

1. Per Gosta Andersson, Mathematical Statistics, Department of Mathematics, Linkdping University, SE-581 83 Linkoping, Sweden; Daniel Thorburn,
Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden.



96 Andersson and Thorburn: An Optimal Calibration Distance Leading to the Optimal Regression Estimator

(W_WO)T R(wW-w,),

where R =(w, | )™
Thisresultsin

w=w, +R™*x" (X R*XT)(t, -1, (%)

which meansthat w = g, sincehere R=R".

Turning to the optimal estimator, consider first the vector
(t,, t7) andlet X, bethe covariance (row) vector of f,
and f, and X, , the covariance matrix of f,. Now, the
minimum-variance, see Montanari (1987), unbiased linear
estimator (in fy and t, ) of t, isthedifference estimator

f\y'i_zy,xz;,lx(tx_fx)' (5)
Since X%, , ad X, , in practice are unknown, we let the
optimal estimator be

tyopt = yT Wo +Zy,x Z;}x(tx _tx)

=f, +(Y" Ry X") (X Ry XT)(t, =), (6)

opt opt

where Ry, = ((m; —m; m;)/(m; 7 7)) jes-

In an_ asymptotic context, where n—e and
N—eo, 2, and X, , may be viewed as components of
the asymptotic covariance matrix of (f%, fxT ). Under the
assumption of consistency of ., , and X, ,, which holds
under very mild conditions, see Andersson et al. (1995), the
optimal estimator has the same asymptotic variance as the
difference estimator (5). In particular it follows that the
optimal estimator is asymptoticaly better than the usua
GREG edtimator, see Rao (1994), Montanari (2000) and
Andersson (2001), i.e, its asymptotic variance is never
larger and usually smdler. In section 5 we actualy present
some simple smulations showing that the optimal estimator
can be much more efficient than GREG. However, one does
not know anything about the efficiency for finite samples,
since the covariance estimator may converge dowly. The
rate of convergence isillustrated in section 5. Note also that
in some cases there exist asymptoticaly even better
estimators which are not linear.

Now, the fact that the GREG edimator is aso a
calibration estimator using

(W_WO)T Rr_l(W_Wo) (7)

as the distance measure and comparing (1) with (6), leads
one to believe that replacing R, by R, in (7) should
imply that we instead derive the optima regresson
edtimator as a caibration estimator. That this actudly holds
is shown below.
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3. TheMain Resault

In order to show existence of a distance measure
corresponding to the optima estimator, we will first state
and prove aresult in the generd case.

Lemma: With R denoting an arbitrary positive definite
n X n matrix,

(W—wp)" R(W—w,) ()
subject to the constraint X w=t,, isminimised by
w=w,+R™* XT (X R X")™(t, —1).

Proof: Introducing the J x1 vector A of Lagrange
multipliers, we get after differentiation the equation system

2R(W-W,)+XTA =0 9

XW -t =0 (10)

Multiplying (9) by XR™, using (10) and solving for A,
yieldswith X w, =1, :

A=2(XR™*XT)(f, -t,). (11)

Putting thisinto (9) and solving for w finaly leadsto
w=w,+R™* X" (X R X")™(t,-f,).
From the lemma we thus have the following main result:

Theorem: With R,, being postive (semi ) definite and
using the optimal calibration distance-measure, which we
get by leting R= R;plt (Rot) 1N (8), the cdibration
estimator will become the optimal regression estimator.

Remark: R,, may in some cases be indefinite (see below).
The only thing we know isthat it is an unbiased estimator of
a covariance matrix. If it is not positive semi-definite there
dso exist x—vaues such that X R, X T is not positive
semi-definite, but the probability of such x —values goes to
zero as the population and sample sizes increase (and if
2, x IS postive definite). A drict minimisation of a
distance with “a negative component” would lead to
infinitely large corrections. This problem of the optimal
estimator has, to our knowledge, not been pointed out
previoudly.

The smplest way to find a distance which gives the
optimal estimator as a cdibration estimator is to find a
matrix R g which has the same elgenvectors as R, but
where the eigenvalues are replaced by their absolute values.
(This result can be shown aong the same lines as the proof
of the lemma above. The distance can be seen as the sum of
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the products of the eigenvdues and the sguared
eigenvectors. Putting the derivatives equal to zero means
that in the proposition we found the extremes i.e, the
minima for pogtive eigenvalues and the maxima for
negative eigenvalues. By changing al negative signs the
extremeswill al be minima).

4. Examples

Posttive definite R, : Suppose that the objects in U are
independently  drawn  with  incluson  probabilities
T, ..., Ty (Poisson sampling); thus implying a random
sample sze n, where E[n]=2,, w;. Due to the

independence of drawings, R, isdiagona and specifically

opt

2

- T,
RO&‘ZI”(l—nJ :
I Jies

Positive semi-definite R, : Suppose n objects are drawn
according to simple random sampling, i.e., each object has

inclusion probability 7; =n/N. Theelementsof R, are

i:._(ﬁij—n
J: n N

. (N)Z n—N
izj|— .
n) N(n-2
Thismeansthat R, issingular withrank n—1.
Suppose insteed (as in the following smulation study)
that U is partitioned into L dtrata of szes Ny, ..., N,

from which we draw independent simple random samples
of szesn,, ..., n_. Thedementsof R, thenare

opt

N, —n,

(Y
a ny, Nj,

2
i;tj:[ﬁj Mh =Ny
n, ) Ny(n, -1

when in the latter case i and j both belong to stratum
h, h=1, ..., L and O otherwise. Therefore R . has rank
N-h.
Non positive semi-definite R, : Let U condst of four
elements and s of two elements. Suppose that a systematic
sample is taken with probability 0.94 and a simple random
sample with probability 0.06, i.e, m,;=m, =0.48 and
Ty, =Ty, =T, = T4, =0.01. Inthat case

opt

23/ le (12)

2
R =
ont [23/12 2

97

with probability 0.96 and

R 2 -9 13
o _gp 2

with probability 0.04. The second matrix has a negative
eigenvalue.

The problem does not necessarily disappear if N is
large. Condider instead a population consisting of N/4
drata with four elements each. Suppose that the above
sampling procedure is used independently in each stratum.
In that case R, will consst of a matrix with the above
2x 2 —matrices dong the diagonal and zeroes elsewhere.

5. A Simulation Study
5.1 Notation and Outline

In order to make empirical comparisons between the
optimal estimator (OPT) and the GREG estimator (GREG)
and dso compare these edtimators with the Horvitz-
Thompson egtimator (HT), we have conducted a small
simulation study. In the previous sections we mentioned that
OPT is Best Linear Asymptotic Efficient and a calibration
estimator. Even though it has many nice properties it may
for reasonable sample sizes be inefficient. Here we will in
some smulated Situations show that the optima estimator
can be a substantial improvement compared to GREG aso
for moderate sample sizes when the population is
(ddliberately) chosen to be unfavourable for GREG. A
smple but non-trivial situation for which OPT is not equa
to GREG arises for dratified smple random sampling, in
particular, when the dopes differ between the different
grata and the ungtratified population. Consider therefore a
population of sze N, which is partitioned into L srata of
szes N, ..., N, . From each stratum h a simple random
sample s, of sze n, is drawn, where s +...5, =s and
n +...+n_=n. For smplicity we further assume that the
auxiliary information is one-dimensiona and global, i.e,
only t, is known beforehand. For GREG we have chosen
the homoscedastic simple linear regression mode, see
Sarndal et al. (1992).

The resulting expressons for HT, OPT and GREG

respectively are
f, =Ny,
1’:\yopt = N(ys( + éopt (X_ Xs( ))
fy =N(Yq + B, (R=%y)),

where X = (U/N)XY %, g = WN)Z N, Y5, (Xg
analogous) and
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CONE(1 A o
é _ Zh:l nh _1( nh Nhjzlesh ()(I Xsh)(y| ysh)
opt 2
L L i_i _ % )2
Zh:l n, _1[nh Nhj ZIESH(XI X%)

N
Z::n:lihziesh (% =X) (Vi — Vo)
B=—1Th

¢

N
le;:l iziesh (X| - Xst)z
n,

It is easily seen from these formulae that the optimal
regression coefficient is the mean of the within stratum
dopes and that the GREG regression coefficient is the
global dope. When there is alarge difference between these
dopes the GREG correction becomes bad. We are here
particularly interested in comparing the qualities of these
estimators when the assigting (linear) model for GREG fails.
We have thus generated x— and y-vaues from
correlated lognormally distributed random varigbles X and
Y, where In X is normaly distributed with expectation O
and variance 6 (N(0, 5,)) and InY is N(0, 5,). The
variances o; and o5 and the correlation between In X and
InY can then be chosen to obtain prespecified values of the
variances o, of X and o2 of Y and their correlation
p(X,Y). Vdues generated from bivariate norma
distributions were obtained by MATLAB (verson 6.0).
Twelve populations have in this manner been created, each
of sze N =10,000, including four combinations of
variances o, and o} (10 and 100) and three values of the
corrdlation p(X,Y) (05 07 and 09). For these
populations a variance of 10 implies a skewness of 9.37 and
the variance 100 leads to skewness 38.59.

Now, before gratification, the objects of each population
are ordered with respect to ascending y-—vaues. The
number of srata is L=5 throughout with sizes
N, =4,000, N,= 2500, N;= 2,000, N,=1000 and
N5 =500. These strata are constructed in such a way that
objects with the smallest y —values condtitute stratum 1,
and o forth. From each stratified population we have drawn
samples of sizes n= 250, 1,000 and 2,500, where for each
sample n, =...=n.. This means that we have created an
approximate mtps (probability proportional to size) design,
with for example, objects in stratum 5 having the largest
inclusion probability (ns/Ng). The number of simulated
samples was K =25,000 for each of the 12x3=36 cases
and HT, OPT and GREG were then computed for each
sample.
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In general, common measures of quality for an estimator
t of atotd t from asequence f, ..., f, are the estimated
relative bias

—+y|

-t
t
and the estimated variance

where = (U K) K, £.

Since we are mainly concerned with comparisons of
OPT and GREG, we will only display results of the relative
measures of variance (or equivaently standard deviation)

s? S?
y opt yr
s? and S
y HT y HT

from which we can compare the estimated variances of OPT
and GREG with HT and also determine which of OPT and
GREG have the lowest estimated variance.

5.2 Results

Firdly, as reference, the absolute value of the estimated
relative bias of the unbiased HT did not in any case exceed
4.10™*. The corresponding maximum values for OPT and
GREG were 6-10%, which meansthat we may concentrate
on the ratios of estimated variances in order to evauate
relative efficiencies of HT, OPT and GREG.

As seen from Table 1, OPT is superior to both HT and
GREG (with one exception: p(X, Y)=0.9, o2 =10,
6;=100 and n=250, where GREG has dlighly less
estimated variance). For the lowest correlation though, the
decrease in estimated variance for OPT compared with HT
is not substantial. GREG on the other hand does not
compete well with the others and this anomaly is
partticularly accentuated for the largest sample sze
n=2,500. Changing p(X, Y) to 0.7 means improvement
for both OPT and GREG, but GREG is also now for most
casesinferior to HT. Findly, for p(X, Y)=0.9 GREG till
displays poor behavior compared with HT for n=2,500
(with the exception of 6 =100 and o} =10). In general
GREG is closing in on OPT for increasing values of
p(X,Y) (the assiging linear modd becoming less
misspecified), while OPT, on the other hand, is increasing
its superiority over GREG for increasing sample sizes,
which should come as no surprise snce OPT s
asymptotically well motivated.
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Tablel

Relative Estimated Efficiencies (Given as Percentages) of OPT (S] o/ Sf ) and GREG (S7, /S]yr) to HT,

Based on 25,000 Simulated Samples for Each Sample Size

64=10 64=10 6% =100 64 =100
o, =10 65, =100 o, =10 o5, =100
OPT GREG OPT GREG OPT GREG OPT GREG
p(X,Y)=05
n= 250 99.1 232.8 97.4 176.8 93.9 179.4 914 122.3
n=1,000 98.3 2471 98.0 193.7 97.5 183.5 99.9 141.9
n= 2,500 9.8 756.7 9.8 1,455.0 97.8 534.7 9.8 1,625.5
p(X,Y)=07
n= 250 89.7 197.6 83.8 101.2 736 120.4 64.3 729
n=1,000 91.0 2275 89.8 117.2 81.2 1205 717 84.0
n= 2,500 93.8 648.2 915 1,308.6 93.1 2186 93.1 673.5
p(X,Y)=09
n= 250 56.5 76.1 412 388 27.2 434 404 414
n=1,000 61.8 87.3 441 442 276 44.1 415 454
n= 2,500 770 237.4 59.8 3354 63.6 66.0 746 259.8
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Approximationsto b in the Prediction of Design Effects
Dueto Clustering

Peter Lynn and Siegfried Gabler *

Abstract

Kish's well-known expression for the design effect due to clustering is often used to inform sample design, using an
approximation such as b in place of b. If the design involves either weighting or variation in cluster sample sizes, this can
be a poor gpproximation. In this article we discuss the sensitivity of the approximation to departures from the implicit

assumptions and propose an dternative approximation.

Key Words: Complex sample design; Intracluster correlation coefficient; Selection probabilities; Weighting.

1. Alternative Functions
of Cluser Size

Kish (1965) used an expression for the design effect
(variance inflation factor) due to sample clustering,
deff =1+ (b-1) p, where b is the number of observations
in each cluster (primary sampling unit) and p is the
intracluster correlation coefficient. This expression is wdll-
known, is taught on courses on sampling theory, and is used
by survey practitionersin designing and evaluating samples.

The expression holds when there is no variation in cluster
sample size and the design is equa-probability (sdlf-
weighting). We can express these two criteriaformally:

b, =bV, @
where c=1, ..., C denotethe clusters, and

W =W Vi 2
where i =1, ..., | denote the weighting classes, with w; the
associated design weights.

However, most surveys involve departures from (1) and
(2). In the general case, i.e.,, removing restrictions (1) and
(2), Gabler, Hader and Lahiri (1999) showed that under an
appropriate model, deff, =1+ (b —1) p, where

C | 2 C b
w-3(Swn | [Suin 53] [TEw o
c=1\i=1 =1\_j=1 c=1j=1
and by isthe number of observationsin weighting classi in
cluster ¢, b =Y 5, b, (we have changed the notation from
that of Gabler etal (1999) to provide consistency) and
is the weight associated with the j™ observation in cluster
c j=1 .. b.
The quantity b" can be calculated from survey micro-
data, provided the design weight and cluster membership is
known for each observation. However, at the sample design
dage it is not clear how b" can be predicted. Gabler et al.

(1999) interpreted Kish's b as aform of weighted average
cluster size:

c=1 i=1 c=1li=1
c b c b,
=2 [chwq}/Z W @
c=1 j=1 c=1j=1
where b, is the number of observations in cluster
b.=>!_.b,. However, (4) is no easer than (3) to

predict at the sample design stage. A smpler interpretation,

perhaps commonly used in sample design, is the
unweighted mean cluster size:
C
=> b, /C=m/C. 5)
c=1

It is much easier to predict b a the sample design stage
then either b, or b’, asit requires knowledge only of the
total number of observations, m, and total number of
clusters, C.

2. Réationship Between b, b, and b
Under Alternative Assumptions

Let

b, I _

Wc=bi Wy = Yw e

c j=1 i=1 c
1 C P m C -
Cov(b,, bW, )_Ez bZ W e Db, W,

c=1 c=1
and
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1

b,
\/a(mﬁ)zzb zz (mﬁ _v%)Z
c j=1
L b,
=Y X (w - W,)* Ve
i=1 t%
Then
C
C-Cov(b,, b, W?)+b > b, W/
b’ =— — . (6
D b -Var(wy)+ Y b, W’
c=1 c=1
If (1) holds, then (6) becomes:
C
DI
b'=b| ——— . @
> Var(wy)+ Y W,
c=1 c=1

So, in that circumstance, b™ <b. If, additionally, weights
are equa within clusters, viz

w, =w, Vjec ®

thenb =D .
If (8) holds, but not (1), then

b" >b if andonlyif Cov(b,, b, W?)>0
C-Cov(b,, b, W?)

c’ ~c Ve
& 2
2 bW,
c=1

The covariance would be negative only if small cluster
sizes coincide with large average weights within the clusters
and vice versa. In section 4 below, we observe that this did
not occur in any country on round 1 of the European Social
Survey. Furthermore, from (3) and (4), we have:

voB =S o) /Twe @

If we additionally impose the restriction (1), then we
have the obviousresult b =b, =b =D, Vc.

The result in (9) would apply to surveys where the only
variaion in sdection probabilities was due to dispropor-
tionate sampling between domains that did not cross-cut
clusters. A common example would involve dispropor-
tionate dratification by region, with PSUs consisting of
geographical areas hierarchical to regions.

A practicd relaxation of the restriction on the variation in
weightsis

snce b —-b=

by =h, (ﬂj Vi, c. (10)
m

In other words, we alow variation in weights within
clusters, but we constrain the weights to have the same
relative frequency didribution in each cluster, i.e, the
means and the variances of the weights within clusters do
not depend on the clugters.
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Now, (3) simplifies asfollows:

c=1 i=1 i=1
2 c ,
2 wh | > b
i=1 c=1
= . 11
- (1)

Note that ((X!_.w b)*)/Zi_;w’b =m/(1+cy),
where cZ is the squared coefficient of variation, across all
observations, of the weights Also, (35_.b?)/m?=
(1+c2)/C, where ¢ is the squared coefficient of
varidion, across al clusters, of the cluster sample sizes.
Thus, (11) becomes:

. m (1+c§):6(1+c§):6 . 12
) C ey B

So, b will underestimate b™ if ¢ >c2 and vice versa.
In particular, if wy =wVj,c and ¢} >0, then b’ >b. The
greater the variation in b, the greater the extent to which
b will under-estimate b’

Assumption (10) will rarely hold exactly, but this result
might be useful in gStuations where the distribution of
weights is expected to be smilar across clugters. An
example might be address-based samples where one person
is selected per address. If the distribution of the number of
persons per address is approximately constant across PSUs
(in the population), then the distribution of weightswill vary
across cugters in the sample only due to sampling variation
and disproportionate nonresponse (the effect of this could,
of course, be substantial if cluster sample sizes are small).

If no restriction is imposed on the variation in weights,
but Var(wy) >0 for at least one ¢, then, from (6),

c’'™c

2 72
b’ 2B if andonlyif ¢ = & 0D We)

>1. (13)
mY_ b Var(w,)

If (10) holds, then { =c?/c2.

3. Implicationsfor Sample Design

Expression (12) suggests that b™ may be predicted by
predicting the relative magnitudes of ¢ and c’. However,
thisresult appliesto a specid situation, where
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Cov(w,, b,) =

ibz (w, —w) (b, ~b)
Z(_;: ( E)(Zl:wl b; —b, W

(b, ~bJe, (Ile b - ij

3|H 3|H

from (10) 1 ZC:
-
m c=1
=0
where
b

§w=%§

Zi: =—(1+cb).

o

bC

Z:: =

When this covariance is expected
appropriate to predict b thus:

ol
Il

Il MO ZMO

Ella 3

1
m
to be smdl, it may be

~ A2
pA*G) (14)
(2+¢;,

Both coefficients of variation can be estimated from
knowledge of the proposed sample design. In the following
section, we investigate sensitivity of predictions obtained in
this way to assumption (10) using red data from different
sampledesignswith Cov(w, b,) > 0.
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4. Example: European Social Survey

The European Socid Survey (ESS) is a cross-national
survey for which great efforts have been made to achieve
gpproximate functional equivalence in sample design
between participating nations (Lynn, Héder, Gabler and
Laaksonen 2004). Nevertheless, there is considerable vari-
ety in the types of design used, primarily due to variation in
the nature of available frames and in local objectives, such
as a dedre for sub-national analysis which may lead to
disproportionate dratification by domain. We use here data
from the first round of the ESS, for which fieldwork was
carried out in 2002 —2003. Of the 22 participating nations,
17 had a clustered sample design. Of these, two had not yet
provided usesble sample data at the time of Writing In
Table 1 we present the sample values of b, b, ¢, c,
b, |b-b"|, [b-b"], Corr( Wy, b)), ad ¢ for the
remaining 15. Note that the United Kingdom and Poland
both had a 2 — domain design with the sample clustered only
in one domain, namely Great Britain (i.e, excluding
Northern Ireland) and less densely-populated aress (i.e., al
except the largest 42 towns) respectively. Figures presented
intable 1 relate only to the clustered domain.

Sample Valuesof b, b, ¢, ¢, b|b-b FT%'?%) |, Corr(wg, by), and ¢, for 15 Surveys
Country b’ b & c |b-b"| |b-b"|  Corr(wy, b) ¢
Austria AT 6.49 708 008 025 6.15 0.34 0.58 0.0036 0.4549
Belgium BE 6.56 579 013 000 6.56 0.00 0.77
Switzerland CH 8.83 923 012 021 850 0.34 0.40 0.0223 0.7060
Czech Republic Cz 2.94 270 024 025 2.68 0.26 0.24 0.0225 1.7350
Germany DE 1885 1813 0.07 011 1742 1.43 0.72 —0.2287
Spain ES 4.96 504 017 0.22 4.80 0.15 0.08 -0.0767 0.8757
Great Britain GB 1111 1227 0.08 0.22 10.90 0.21 1.16 0.0114 0.4198
Greece GR 5.47 586 0.09 022 525 0.22 0.39 —0.0280 0.5207
Hungary HU 8.68 818 0.06 000 8.8 0.00 0.50
Ireland IE 1209 1118 013 004 1205 0.05 0.91 0.0006 3.1054
Isradl IL 11.79 1282 012 056 927 253 1.02 -0.1271 0.4401
Italy IT 1098 1087 0.26 0.16 11.80 0.83 0.10 —0.5589 1.3018
Norway NO 4409 1868 133 001 4332 0.77 2541 0.0807
Poland (rural) PL 10.07 945 0.06 0.01 9.88 0.19 0.62 0.2923
Slovenia S 10.76 10.13 0.06 0.00 10.76 0.00 0.63
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From (12), we would expect to observe b >b" when
€2 >¢2. A common sample design for which this
inequality can be anticipated is one where, @) the sdected
cluster sample sze is constant, so variation in b, will be
limited to that caused by differential non-response; and b)
the samples are equal -probability samples of addresses, with
subsequent random selection of one person per address,
leading to variation in design weights reflecting the
variation in household size. There are six nations with
sample designs of thistype (AT, CH, ES, GB, GR, IL). Itis
indeed the case that for al of these nations, {<1 and
b >b". Furthermore, for 5 of these 6 nations (AT, CH, ES,
GB, GR, h=1 .., 5) we might expect (10) to be a
reasonable approximation as the only variation in weights is
that due to sdlection within a household/address. For these,
we might expect b to perform better than b. Indeed,
|b—b" |<|b-b"| for 4 of the 5, and (Z5_,|b—b" |)/
>>_,|b—b" |=0.48. The one nation where b would not
provide an improvement is Spain and this is to be expected
as b is smal. Smal cluster sample sizes leave them
relatively more susceptible to the effects of nonresponse and
aso sampling variance, which will lead to violation of (10).
In Israd, there was a further source of variation in design
weights as there was disproportionate dtratification by
geographica aress, This too causes violation of (10), so we
would not expect b necessarily to provide an improvement
on b asapredictor of b’.

Of the nations where ¢? < cZ, there is only one (CZ) for

which b<b" and {>1. This is aso the nation with the
smdlest vaue of b When cluster sample sizes are
particularly small, deff will be small and the choice between
estimatorsof b™ may be lessimportant.

There are five nations where sample units were
individuals selected with equa probabilities (within
clusters) from population registers (BE, DE, HU, PL, SI). In
this case (8) (and, therefore, (10)) holds strictly, so we have
b <b". For three of these nations (BE, HU, Sl) the sample
is equal-probability, so we observe b =b*. Itisclear that b
is superior to b for equa-probability samples. For
Germany and Poland, there is some variation in design
weights between clusters (but not within). This variation is
modest in Poland, and |b—b" |<|b —b" |, but the sameis
not true in Germany, where the ex-East Germany was
sampled at a considerably higher rate than the ex-West
Germany.

The Norwegian sample design was the only one that
resulted in considerable variation in cluster sample sizes at
the selection stage. The dramatic impact of this on 53 b’
can clearly be seen. Again, thisis asituation in which b is
likely to be preferableto b asapredictor of b’

The designs in Ireland and Italy both involved selecting
addresses from the electord registers with probability
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proportional to number of eectors and then selecting one
resident at random from each selected address. Such designs
are not equal-probability, but are likely to result in
considerably less variation in design weights than the
address-based sample designs discussed earlier (Lynn and
Pisati 2005). In both these cases, €2 < &2, the difference
being greater in the case of Ity where some cluster sample
sizes (in the largest municipalities) were considerably larger
than the others (in Irdland, all were equa at the sdlection
stage). Aside from the Czech Republic, these are the only
two nationswith { >1.

5. Concluson

To aid prediction of the design effect due to clustering,
we believethat b islikely to be a better choicethan b asa
predictor of b" in situations where it can reasonably be
expected that (10) will approximately hold. This includes,
but is not restricted to, the following common types of
sample design:

—  Equa-probability designs where cluster sample sizes
vary by design;

— Equal-probability designs where clusters do not vary
by design but are likely to vary due to nonresponse;

— Address-based samples where one person is selected
at each address, there is no other significant source of
variaion in sdlection probabilities, and cluster sizes
do not vary by design.
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A Noteon the C, Statistic Under the Nested Error Regression M odel

JanelL.Mezaand P. Lahiri*

Abstract

Nested error regression models are frequently used in smal-area estimation and related problems. Standard regression
model selection criterion, when applied to nested error regression models, may result in inefficient model selection methods.
We illustrate this point by examining the performance of the Cp satistic through a Monte Carlo smulation study. The
inefficiency of the Cp statistic may, however, be rectified by a suitable transformation of the data.

Key Words: Cp statistics; Nester error regression model; Monte Carlo simulation.

1. Introduction

This paper examines the limitations of a standard
regresson model selection criterion, C, the dtatistic, for
nested error regresson models. The C, datistic (Malows
1973) isdefined by

RSS,

62

Cp =

-n+2p (1)

where RSS; is the resdual sum of squares and p is the
number of parameters for model P, n is the number of
observations and 6 is an estimate of ¢°. If the model is
correct, the value of C, should be smilar to or smaller than
p. The C, model selection criterion is sensitive to outliers
and departures from the normd i.i.d. assumption on the
errors. The C, datistic therefore cannot be directly applied
to the nested error regresson model since here the error
structureisnot i.i.d.

We propose a transformation that adjusts for intracluster
correlation and alows use of the standard C, mode
selection criterion. The method presented in this paper can
be applied to sdlect covariates in the analysis of complex
survey data and small-area models. For example, our
technique could be used to sdect covariates in the nested
error regression model used by Battese, Harter and Fuller
(1988) to estimate the area planted (in hectacres) with corn
or soybeans for twelve lowa counties. They used the
following model:

Yi =XB+V +6;, @

forunit j=1,...,n incounty i =1,..., m where n, isthe
sample size for small area i and the total sample size is
n=x%n. The county effects, v, are distributed as
N(0, 62) independent of the random errors &, Which are
distributed as N(0, 67). The area (in hectacres) in unit j of
county i is denoted by y;, and X = (L X;,..., ;) isa

p+1 vector of the values of the covariates x;, ..., x, for
unit j in county i. The vector B=(B,.B;.....8,)" is a
p+1 vector of unknown parameters.

The nested error regression model can be expressed in
metrix form as

y=XpB+e ©)

where y=(Y.,.... Yo) s ¥ = (Yies--s Yin ) €= (€L ., €7)',

& =(&1,...,8,) & =V, +6;. Further, X'=(Xj,..., X}))

where X; is an nx(p+1) matrix with rows x; for
j=1...,n,e~N(0,6"V) where 6°=06’+02,V has
block-diagonal form @'V, with V, =(1-p)l, +pJ,

where p =62/ 6 is the common ingrastratum correlation,
I, isthe n xn identity matrix and J,, isthe n xn unit
meatrix.

Since the nested error model does not have i.i.d errors,
standard regression procedures do not apply. The smulation
study in section 3 revesls that the C, criterion does not
perform well under the nested error regresson model. The
transformations considered in the next section are used to
transform the nested error regression mode! into a standard
regression model with i.i.d. errors. With these transformed
observations, the C,, criterion performs much better.

2. Adjugingfor Intra-area Correations

As noted in the previous section, conventional model
selection methods like the C, criterion are not appropriate
since the ingtrastratum correlations are ignored. Wu, Holt
and Holmes (1988) and Rao, Sutradhar and Yue (1993)
studied the effect of conventional methods for the nested
error regression model in a different context.

Congder the nested error regresson model and let
o’ =02+02 and p be the common intra-area correlation,
p=0c-/c’ Asin Fuller and Battese (1973) and Reo e al.
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(1993), transform the nested error regression modd into a
standard regression modd withi.i.d. errors.

Let
12
0, =1—{1_—p} , 4
1+(n -Dp
y;} =Y~ oY, ®
XG =X — X, 6

where y, =31y, /n and X =X%,x;/n. The trans
formed model then becomes

yj =X B+€;, @

for j=1...,n,i=1...,m and g are independently dis-
tributed as N(0,c2). Now, the standard C, model
sdlection criterion may be applied to the transformed data.

In practice, p isusualy unknown and must be estimated
from the data. Reo et al. (1993) used Henderson's (1953)
method to obtain unbiased quadratic estimators &2 and &2
of the variance components o2 and o-. Once the
etimators have been obtained, p =62 /(6 +062) may be
estimated by

- 62

\

To obtain the estimators of the variance components, let
{u;} be the resduas from the ordinary least squares
regression of {y; — ¥} on {X; =%, ..., X, = X ,} with-
out the intercept term, where x, =%, x;/n for
I=1...,p. Let {r;} be the resduas from the ordinary

Meza and Lahiri: A Note on the C, Statistic Under the Nested Error Regression Model

least squares regression of y; on {Xo, ..., X} With the
intercept term.
Theegimatorsof 2 and o2 aregiven by

Giz(n—m—p—l—l)’li ia,z ©)
i=1 j=1
62= n;l{zm: i e —(n-p-1 64, (10)
i =

n. =n—tr{(X’X)‘1Z e x x’} (11
i=1

where A =0 if the model has no intercept term and A =1

otherwise. We propose to gpply standard C, model

selection criterion on these transformed observations yIl

and X;.

3. A Simulation Study

A smulation study was conducted to examine the
behavior of the C, model selection criterion and the
proposed transformations for the nested error regresson
modéel. The following model was considered:

Vi =Bo Xjo +B1 %1 T B2 X2 +Bs X3+ Ba X0 Vi + 6 (12)

for i=1...,10, ne{2,....,5, j=1...,n and n=40.
The v, are distributed as N(0,c;) independent of e
which are distributed as N(0,1). The data x; are taken
from an example given by Gungt and Mason (1980) and
included in Shao (1993) (Table 1). Thevalueof x;, is1for
dli=1...,10j=1...,n.

Tablel
Datafor Nested Error Simulation
0.3600 0.5300 1.0600 0.5326 0.0900 0.1800 0.5900 0.1855
1.3200 2.5200 5.7400 3.6183 0.0200 0.1600 0.2400 0.1572
0.0600 0.0900 0.2700 0.2594 0.0200 0.1100 0.2100 0.0998
0.1600 0.4100 0.8300 1.0346 0.0500 0.2400 0.4300 0.2804
0.0100 0.0200 0.0700 0.0381 0.1100 0.3900 0.2900 0.2879
0.0200 0.0700 0.0700 0.3440 0.1800 0.1100 0.4300 0.6810
0.5600 0.6200 2.1200 1.4559 0.0400 0.0900 0.2300 0.3242
0.9800 1.0600 2.8900 4,0182 0.8500 1.3300 2.7000 2.6013
0.3200 0.2000 0.7600 0.4600 0.1700 0.3200 0.6600 0.4469
0.0100 0.0000 0.0700 0.1540 0.0800 0.1200 0.4900 0.2436
0.1500 0.2500 0.5000 0.6516 0.3800 0.1800 0.4900 0.4400
0.2400 0.2800 0.5900 0.0611 0.1100 0.1300 0.1800 0.3351
0.1100 0.3500 0.4000 0.1922 0.3900 0.3800 0.9900 1.3979
0.0800 0.1300 0.2800 0.0931 0.4300 0.4600 1.4700 2.0138
0.6100 0.8500 0.4900 0.0538 0.5700 1.1600 1.8200 1.9356
0.0300 0.0300 0.2300 0.0199 0.1300 0.0300 0.0800 0.1050
0.0600 0.1100 0.5000 0.0419 0.0400 0.0500 0.1400 0.2207
0.0200 0.0800 0.2500 0.1093 0.1300 0.1800 0.2800 0.0180
0.0400 0.2400 0.0800 0.0328 0.2000 0.9500 0.4100 0.1017
0.0000 0.0200 0.0400 0.0797 0.0700 0.0600 0.1800 0.0962

Statistics Canada, Catalogue No. 12-001-XIE



Survey Methodology, June 2005

Some of the B, may be zero and thus various
combinations of varisbles were chosen  from
(Xo» %15 X5, X3, X,) t0 bethe predictors used to generate data
coming from a nested error regression model. There are
2P —1=31 possible models. Each model will be denoted
by a subset of (0, 1, 2, 3, 4) that contains the indices of the
varigbles x in the model.

Data were generated using 1,000 simulations for severd
values of 62 to estimate the probability of sdlecting each
model using the C,, criterion. Thevalue of o3 wastaken to
be 1 for dl smulations. The results of the smulation are
givenin Table 2. The values of ¢’ considered were 0, 1, 2,
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5, 10 and 16 and the values of B’ were taken to be (2, 0, 0,
4,0),(2,00,4,8),(2,90,4,8 ad (2,9, 6,4,8) asin
Shao (1993). Modd s were categorized as optimal, category
Il (correct but not optimal), or category | (incorrect).

The C, criterion did not perform well for large values of
o’. For the modd B'=(2, 0, 0, 4, 0) with o2 =1 the
estimated selection probabilities were: optimal modd, 0.54;
correct moddl, 0.46; incorrect model, 0. In contrast, when
o’ =16, the estimated selection probabilities were: optimal
model, 0.43; correct model, 0.35; incorrect model, 0.22.

The C, criterion also did not perform well for larger
modelswith large valuesof 2. The C, criterion however

Table2
Probabilities of Model Selection Before Transformation

B=(2,0,0,4,0)
Mode Caegory o62=0 o62=1 o2=2 o62=5 62=10 o2=16
0,3 Optimal 0.62 054 0.49 0.46 045 043
0,23 I 0.11 0.09 0.09 0.10 0.07 0.06
0,13 I 0.09 0.14 0.19 0.17 0.15 0.12
0,34 I 0.09 013 0.13 0.14 0.11 0.10
0,123 I 0.03 0.05 0.06 0.05 0.04 0.04
0,1,34 I 0.02 0.03 0.02 0.02 0.02 0.01
0,234 I 0.02 0.01 0.02 0.02 0.01 0.02
01,234 I 0.02 0.01 0.00 0.00 0.01 0.00
0,1 | 0.00 0.00 0.00 0.01 0.07 0.09
0,2 | 0.00 0.00 0.00 0.01 0.03 0.05
0,4 | 0.00 0.00 0.00 0.00 0.01 0.04
0,1,2 | 0.00 0.00 0.00 0.01 0.01 0.01
0,14 | 0.00 0.00 0.00 0.01 0.02 0.03
01,24 | 0.00 0.00 0.00 0.00 0.00 0.00

B=(2,0,0,4,8)
Mode Caegory o62=0 o62=1 o2=2 o62=5 02=10 o2=16
0,34 Optimal 0.72 0.67 0.63 0.61 0.58 0.49
0,234 I 0.12 0.12 0.14 0.14 0.11 0.09
0,134 I 0.12 0.16 0.18 0.14 0.12 0.11
01,234 I 0.04 0.05 0.05 0.05 0.04 0.04
0,4 | 0.00 0.00 0.00 0.00 0.01 0.06
0,14 | 0.00 0.00 0.00 0.02 0.05 0.10
0,24 [ 0.00 0.00 0.00 0.03 0.07 0.10
01,24 | 0.00 0.00 0.00 0.00 0.01 0.01

B=(2,9,0,4,8)
Mode Caegory o62=0 o62=1 o2=2 o62=5 ©2=10 o2=16
0,1,34  Optimd 0.83 0.78 0.75 0.63 0.39 0.25
0,1,234 I 0.17 0.20 0.18 0.13 0.09 0.07
0,34 | 0.00 0.01 0.03 0.13 0.29 0.35
0,14 [ 0.00 0.00 0.00 0.03 0.11 0.15
0,234 | 0.00 0.01 0.03 0.07 0.06 0.09
0,24 | 0.00 0.00 0.00 0.00 0.02 0.05
01,24 | 0.00 0.00 0.00 0.02 0.04 0.04

B=(29648)
Mode Caegory o62=0 o2=1 o2=2 o62=5 02=10 o2=16
0,1,234 Optimd 1.00 0.98 0.90 0.60 0.29 0.11
0,234 | 0.00 0.02 0.07 0.24 0.32 0.28
0,134 | 0.00 0.00 0.02 0.11 0.18 0.23
01,24 | 0.00 0.00 0.01 0.06 0.13 0.17
0,34 [ 0.00 0.00 0.00 0.00 0.03 0.09
0,24 | 0.00 0.00 0.00 0.00 0.03 0.10
0,14 [ 0.00 0.00 0.00 0.00 0.01 0.03
0,13 [ 0.00 0.00 0.00 0.00 0.00 0.00
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did very well for large models with small values of c2. For
the full model B’ = (2, 9, 6, 4, 8) with o2 =1, the estimated
sdlection probabilities were: optima model, 0.98; correct
model, 0.02; incorrect mode!, 0. In contrast, when o2 =16,
the estimated selection probabilities were: optima model,
0.11; incorrect model, 0.89. Note that in this scenario there
are no correct models other than the optimal model.

In summary, when the C, criterion is applied to data
following the nested error regression mode:

1.  For any particular modd, the estimated probability
of sdecting the optimal model decreases as o
increases.

2. For any paticular model, the estimated probability
of sdecting an incorrect model increases as o
increases.

3. Asthe number of variables included in the model

increases and o7 increases, the estimated proba-
bility of selecting the optimal model decreases.

4.  Asthe number of variables included in the mode
incresses and o2 increases, the estimated
probability of selecting an incorrect mode
increases.

The data were then used to estimate the probability of
selecting each model using the C, criterion under the
transformation for p known. The results of the smulation
are given in Table 3. For the model B’ =(2,0,0, 4,0) with
62 =0 (standard regression model) the estimated selection
probabilities were: optimal model, 0.62; correct mode,
0.38; incorrect modd, O (Table 2). Similarly, under the
transformation for p known with c2 =16, the estimated
selection probabilities were: optimal modd, 0.60; correct
model, 0.40; incorrect model, O (Table 3). For the full model
B =(2, 96,4, 8), the estimated probability of selecting the
optimal model was 1 for both the standard regression model
(Table 2, 62=0) and under the transformation for p
known for al valuesof ¢ considered (Table 3).

In practice, p is unknown and must be estimated from
the data. The transformation for p unknown is therefore
more hepful for practitioners. The results for the trans
formation with p unknown are displayed in Table 4. When
p was estimated, there was only a smdl decrease in the
estimated probability of selecting the optimal model or a
correct model. The largest decrease in the estimated
probability of selecting the optimal model was 0.03 for the
mode with B’=(2,0,4,0) and 62=1,0.61 for p known
(Table 3) compared to 0.58 for p unknown (Table 4).

Table3
Probabilities of Model Selection After Transformation, p Known
B=(20,0,4,0)
Modd Caegory o5=1 o©2=2 62 =5 62=10 02=16
0,3 Optimal 0.61 0.60 0.61 0.61 0.60
0,34 I 011 0.10 011 011 011
0,23 I 0.10 011 011 0.10 011
0,13 I 0.09 0.10 0.08 0.09 0.09
0,123 1l 0.04 0.04 0.04 0.04 0.04
0,134 1l 0.03 0.03 0.03 0.02 0.02
0,234 1l 0.02 0.02 0.02 0.02 0.02
0,1,234 I 0.01 0.01 0.01 0.01 0.01
B=(20,0,4,8)
Modd Caegory o5=1 ©2=2 62 =5 62=10 02=16
0,34 Optimal 0.71 071 0.73 0.72 0.71
0,234 I 0.13 0.12 011 0.12 0.13
0,134 I 0.11 0.12 0.10 0.11 011
01,234 I 0.05 0.05 0.05 0.05 0.05
B=(2,9,0,4,8)
Modd Caegory o2=1 o2=2 62=5 62=10 62 =16
0,134 Optimal 0.82 0.83 0.83 0.82 0.83
0,1,234 I 0.18 0.17 0.17 0.18 0.17
B=(2,96,4,8)
Modd Caegory o2=1 02=2 62=5 62=10 62 =16
0,1,2,3,4 Optimd 1.00 1.00 1.00 1.00 1.00
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Table4
Probabilities of Model Selection After Transformation, p Unknown
B=(2,0,0,4,0)
Model Caegory o©2=1 ©2=2 62=5 62=10 02=16
0,3 Optimal 058 0.59 0.60 0.61 0.60
0,34 1 011 0.10 011 0.10 0.10
0,23 Il 011 0.10 011 011 011
0,13 1 0.08 0.09 0.10 0.09 0.09
0,123 Il 0.04 0.04 0.03 0.04 0.04
0,134 Il 0.03 0.03 0.02 0.02 0.02
0,234 Il 0.03 0.03 0.02 0.02 0.03
0,1,234 I 0.02 0.02 0.01 0.01 0.01
B=(2,0,0,4,8)
Model Caegory o©2=1 02=2 62 =5 62=10 62=16
0,34 Optima 0.70 0.70 0.70 0.71 0.70
0,234 I 013 0.14 013 0.13 0.13
0,134 Il 0.13 011 0.12 011 0.12
0,1,234 1 0.04 0.05 0.05 0.05 0.05
B=(2,9,0,4,8)
Model Caegory o2=1 o= 62 =5 65 =10 62=16
0,134 Optimal 0.82 0.82 0.81 0.83 0.83
0,1,234 I 018 0.18 0.19 0.17 0.17
B=(2,9,6,4,8)
Model Caegory o2=1 o-= 62 =5 65 =10 62=16
0,1,2,34 Optimd 1.00 1.00 1.00 1.00 1.00

Based on our smulation results, when the C,, criterionis
applied to data following the nested error regression modd:

1.  Under both transformations (p known and p
unknown), the estimated probability of selecting an
incorrect model was 0.

2. Under the transformation for p known, the
probability of sdecting the optimal modd was
smilar to that of the standard regression model.

3. When p was estimated, there was only a small
decrease in the estimated probability of selecting
the optimal model or a correct model.

4. Under both transformations (p known and p
estimated), the C, criterion performed well, even
for larger models with large values of &2.

5. The performance of the C, criterion for the nested
eror regresson model resembles that of the C,
criterion for the standard regression model.

In summary, the C, criterion does not peform well
under the nested error regression model when o2 is large.
When the transformation for p unknown (or p known) is
applied, the model then becomes a standard regression
modd and the C, dtetistic performs accordingly.
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Acknowledgements should appear at the end of the text.

Any appendix should be placed after the acknowledgements but before the list of references.

Abstract

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid
mathematica expressionsin the abstract.
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4.2

5.1

5.2

Style

Avoid footnotes, abbreviations, and acronyms.

Mathematical symbols will be itdicized unless specified otherwise except for functional symbols such as “exp()”
and“log(-)”, etc.

Short formulae should be l€eft in the text but everything in the text should fit in single spacing. Long and important
equations should be separated from the text and numbered consecutively with arabic numerals on theright if they are
to be referred to later.

Write fractionsin the text using asolidus.

Digtinguish between ambiguous characters, (e.g., w, ; 0,0, 0; 1, 1).

Italics are used for emphasis. Indicateitalics by underlining on the manuscript.

Figuresand Tables

All figures and tables should be numbered consecutively with arabic numerals, with titles which are as nearly salf
explanatory as possible, at the bottom for figures and &t the top for tables.

They should be put on separate pages with an indication of their appropriate placement in the text. (Normally they
should appear near wherethey arefirst referred to).

References

References in the text should be cited with authors' names and the date of publication. If part of areferenceiscited,
indicate after the reference, e.g., Cochran (1977, page 164).

The ligt of references at the end of the manuscript should be arranged aphabetically and for the same author
chronologically. Distinguish publications of the same author in the same year by attaching a, b, ¢ to the year of
publication. Journd titles should not be abbreviated. Follow the same format used in recent issues.





