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In This Issue 
 

This issue of Survey Methodology is dedicated to Gordon J. Brackstone, who recently retired from 
Statistics Canada. He was Assistant Chief Statistician for the Informatics and Methodology field and 
had been chairman of the Survey Methodology management board since 1987. His continuous support 
to the journal has been marked by great insight and motivated by a constant desire to foster high 
standards of methodology practices. Further, he also authored several articles that appeared in the 
journal. We wish to express our extreme gratitude to Gordon J. Brackstone. 

The current issue contains eight regular papers on a variety of topics, and three short 
communications. As mentioned in the previous issue of the journal, we are introducing a new Short 
Communications section in Survey Methodology. This section will contain shorter papers, typically 
around four pages. Possible topics of short communications include presentation of new ideas without 
the full development of a regular paper, brief reports of empirical work, and discussions or 
supplements related to other papers published in the journal. 

For the past four years the June issue of Survey Methodology has included an invited paper in 
honour of Joseph Waksberg. Starting this year, this annual invited paper will be published in the 
December issue of the journal, bringing it more in line with the associated Waksberg address delivered 
at Statistics Canada’s annual methodology symposium in the autumn. The author of this year’s 
Waksberg paper is J.N.K. Rao and his paper will be on the “Interplay Between Sample Survey Theory 
and Methods: an Appraisal”. 

In the opening paper of this issue, Winglee, Valliant and Scheuren present a new simulation 
approach to estimation of error rates for threshold selection in record linkage. For each potential 
matched pair there is a vector of comparison outcomes that determines the linkage weight. A 
multinomial model is assumed for each comparison outcome, with different multinomial distributions 
for true matches and true non-matches. The distributions are estimated from a sample, and then used 
to simulate the distributions of the linkage weights for true matches and true non-matches. The method 
is illustrated in a case study using data from the U.S. Medical Expenditure Panel Survey (MEPS). 

Krewski, Dewanji, Wang, Bartlett, Zielinski and Mallick investigate the effects of record linkage 
errors, both false positives and false negatives, on risk estimates in cohort studies. They show 
analytically how linkage errors introduce both bias and additional variability into observed and 
expected numbers of deaths, as well as into estimates of standardized mortality ratios and relative risk 
regression coefficients.  They discuss their results in their conclusions, and point to further work that 
needs to be done in this area. 

The paper by van den Brakel and Renssen addresses the problem of testing hypotheses between 
different survey implementations, such as different questionnaire designs, when a complex sampling 
design is used. A design-based theory is developed for cases where the survey implementations are 
assigned to subsamples through completely randomized experimental designs or randomized block 
experimental designs. The theory also makes use of measurement error models. Design-based Wald 
statistics are used to compare the different survey implementations.  

Tsuchiya approaches the long-standing problem of asking respondents sensitive questions in an 
interesting fashion.  Instead of using the randomized response approach that allows little control for 
the researcher, he proposes that the item count technique be adapted for sensitive questions. The item 
count technique presents the respondent with a list of several phrases, from which the respondent 
selects all that apply to him. The researcher constructs the list in two ways:  the first list contains the 
sensitive phrase while the second list does not. Tsuchiya presents various estimators for this technique 
and gives an interesting example related to the Japanese national character. 

In the paper by DiZio, Guarnera and Luzi, finite mixture models are used to detect errors that are 
due to an incorrect unit of measurement at the collection stage of the survey. In a multivariate context 
and assuming that the data are multivariate normal, the procedure can identify which variables are in 
error for a given sampled unit. The authors also provide diagnostics for prioritizing cases to be 
investigated more deeply through clerical review. The proposed methodology is illustrated through an 
example with simulated data and an example with real data.  
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Chiu, Yucel, Zanutto and Zaslavsky present a method for multiple imputation of missing contextual 
variables for use in regression analysis. For each record missing the variable, and for a sample of 
complete records, matched cases are selected based on a set of matching variables. The sample of 
complete records is then used to estimate a regression adjustment for other variables not included 
among the matching variables. The contextual variables for the incomplete records are then multiply 
imputed.  The authors then show an application to a colorectal cancer study, and use simulations to 
compare their approach to three other nonresponse adjustment methods. 

Nandram and Choi examine the important problem of nonignorable nonresponse in small-area 
estimation of a health status variable. When confronted with an example where the usual estimators 
are biased because of the excessive number of nonrespondents, they attempt to account for the 
differences through modeling. Nandram and Choi use two nonignorable nonresponse hierarchical 
Bayes models, a selection model and a pattern model, to analyze the health data. An important 
consideration to their modeling is the incorporation of the input from doctors concerning the 
nonresponse pattern and the outcome variable. The results give an accurate non-response adjustment 
and a better measure of precision. 

Park and Fuller propose a method to reduce the probability of obtaining negative estimation 
weights when using a regression estimator. Their method consists of first approximating inclusion 
probabilities, conditional on Horvitz-Thompson estimates for a vector of auxiliary variables, and then 
using these approximate conditional inclusion probabilities as initial weights in a regression estimator. 
Their method is shown to work well in a simulation study. The weights obtained from this method are 
also compared to weights from quadratic programming, the raking ratio, the logit procedure and 
maximum likelihood.  

In the first of three short communications included in this issue, Andersson and Thorburn show that 
the optimal regression estimator can be expressed as a calibration estimator with an appropriately 
chosen distance function. The resulting optimal estimator is asymptotically more efficient than the 
usual Generalized Regression (GREG) estimator. A small simulation study illustrates several 
situations where the optimal estimator if significantly more efficient than the GREG estimator. 

Lynn and Gabler extend the results of Gabler, Hader and Lahiri (volume 25, 1999) on Kish’s 
expression for the design effect due to clustering. They give a practical approach to estimating Kish’s 
quantity at the sample design stage when only the total numbers of observations and of clusters are 
needed. 

Meza and Lahiri examine the limitations of a standard regression model selection criterion, 
Mallows’ statistic, for nested error regression models. They show, that while a straightforward 
application of Mallows’ statistic may result inefficient model selection methods, a suitable 
transformation of the data may be the answer. 

Finally, we would like to inform you that Harold Mantel will now hold the new position of Deputy 
Editor. Harold has been part of the Editorial Board for the last 15 years. His dedication to the journal 
has been notable and his continuous involvement in the editorial process has been instrumental in 
ensuring that Survey Methodology remains a high quality publication. 

 
 
 
 
M.P. Singh 
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A Case Study in Record Linkage 

M. Winglee, R. Valliant and F. Scheuren 1 

Abstract 

Record linkage is a process of pairing records from two files and trying to select the pairs that belong to the same entity. The 
basic framework uses a match weight to measure the likelihood of a correct match and a decision rule to assign record pairs 
as “true” or “false” match pairs. Weight thresholds for selecting a record pair as matched or unmatched depend on the 
desired control over linkage errors. Current methods to determine the selection thresholds and estimate linkage errors can 
provide divergent results, depending on the type of linkage error and the approach to linkage. This paper presents a case 
study that uses existing linkage methods to link record pairs but a new simulation approach (SimRate) to help determine 
selection thresholds and estimate linkage errors. SimRate uses the observed distribution of data in matched and unmatched 
pairs to generate a large simulated set of record pairs, assigns a match weight to each pair based on specified match rules, 
and uses the weight curves of the simulated pairs for error estimation. 

                                                           
1. M. Winglee, Westat, Statistical Group, 1650 Research Boulevard, Rockville, MD 20850-3195, U.S.A.; R. Valliant, Joint Program for Survey 

Methodology, University of Maryland and University of Michigan; F. Scheuren, NORC, University of Chicago. 

  
Key Words: File matching; Linkage error rates; Match weight; Selection threshold; Medical records. 
 
 

 

1. Introduction  
The basic record linkage framework by Newcombe  

Kennedy, Axford and James (1959) and Fellegi and Sunter 
(1969) uses a match weight to measure the likelihood of a 
correct match and a decision rule to classify record pairs. 
The optimal decision rule uses two match weight thresholds 
for selection (an upper threshold above which a link is 
treated as a match and a lower threshold below which a link 
is treated as a nonmatch). The choice of these thresholds 
depends on the acceptable pre-set linkage error rate and the 
requirement to minimize the number of links with 
indeterminate status between the two thresholds. Nowadays, 
practitioners of computerized linkage systems often use a 
single selection threshold to avoid manual intervention of 
the indeterminate links. Linkage decisions are typically 
made automatically after the system is “tuned” to achieve 
pre-set error levels. The challenge is that current methods to 
determine the selection threshold and to estimate linkage 
errors can produce divergent results depending on the type 
of linkage error, the choice of comparison space, and the 
estimation method. 

This paper shares our experience with fellow practi-
tioners who need a method to guide linkage selection and 
error estimation. Our case study used medical event files 
from the US Medical Expenditure Panel Survey (MEPS). 
MEPS collects medical expenditure data from both 
household respondents and their medical providers. The 
purpose is to combine the data from both sources for 
supporting annual estimations of medical utilization and 
expenditures (see Agency for Healthcare Research and 
Quality 2001 for more details on MEPS). 

Here we discuss the linkage with three sets of annual 
medical event files – MEPS 1996, MEPS 1997, and MEPS 
1998. Each set consisted of a household file containing 
events reported by household respondents for a given year 
and a medical provider file containing the corresponding 
events reported by medical providers of the household 
respondents. On average, approximately 50,000 medical 
events were reported for close to 10,000 persons, and 
around 15,000 person-provider units each year. 

We used two model-based alternatives for linkage error 
estimation. One of these uses simulation to develop a 
distribution of the weights for various levels of agreement. 
This technique, called SimRate, begins by generating 
weight distributions for matched and unmatched record 
pairs. Using these, SimRate can then provide estimates of 
linkage error rates for different threshold levels. The error 
rates can then be used as a guide to action and a way to 
measure success. SimRate is contrasted with a second 
modeling approach created by Belin and Rubin (1995). As 
we hope to show, there is a role for both approaches; each 
has strengths as illustrated in the comparisons. 

 
2. Mixture Models and Simrate 

         Approaches 
 

  
The mixture modeling method of linkage error esti-

mation, as presented in Belin and Rubin (1995), has several 
attractive features. It is flexible in a sense that the weight 
creation process does not have to be considered directly. 
Hence, this method can be applicable to many different 
ways of creating weights. Once a model is specified, error 
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rates can be examined for a continuum of potential threshold 
values and confidence bands can be constructed to monitor 
the precision of error estimates (see section 7). 

Mixture modeling does have limitations. While the 
method provides a particular kind of error rate – the pro-
portion of linked records that are actually unmatched pairs, 
overall false positive and false negative error rates cannot be 
estimated since nonlinked pairs are not considered. The 
error rate that is estimated is conditional on the set of linked 
pairs of records. Furthermore model parameters may be 
hard to estimate if the weight distributions for the matched 
and unmatched sets are not separable (see Winkler 1994). 

A key assumption in the Belin – Rubin approach is that it 
is possible to transform the distributions of the weights in 
the matched and unmatched sets to make them normal. Now 
a real difficulty exists here in that the transformed weights 
may be far from normal when the weight distribution for 
either the matched or unmatched sets is multimodal. 

Another critical requirement is to have a training data set 
whose characteristics are very similar to those that are to be 
matched. Without a good training data set, the input para-
meter estimates for the mixture model may be poor, 
affecting the final estimated error rates obtained. Based on 
our application using annual medical event data repeated 
over three years, the parameters were not stable over time. 
This instability necessitated a training set for each year, 
making the Belin – Rubin approach impractical in our appli-
cation because of the cost and time it required. 

The simulation approach, SimRate, like mixture 
modeling, has the ability to examine different thresholds, 
allowing the user to monitor both the sensitivity and 
specificity of the decision rule for selecting linked pairs. As 
long as the process used to create match weights can be 
realistically modeled, customized methods of weight 
assignment like the one used in the current case study can be 
accommodated. The method does require the generation of 
pairs of records using the distribution of characteristics for 
the matched and unmatched sets. Some effort is needed to 
realistically generate the populations of pairs. In our work 
we have been successful with multinomial models for 
generating these populations. 

 
3. Threshold Weight and Linkage Error 

       Estimation  
Several methods are available in the literature for 

selecting true matches and for estimating linkage errors 
(e.g., Bartlett, Krewski, Wang and Zielinski 1993, 
Armstrong and Mayda 1993, Belin 1993, Belin and Rubin 
1995 and Winkler 1992, 1995). See Fellegi (1997) for an 
overview of evolutions in record linkage, Tepping (1968) 
and Larsen and Rubin (2001) for other linking methods, and 

Scheuren (1983) for a capture-recapture method to estimate 
omission error. 

Comparison of estimates from the different approaches is 
complicated by the fact that each approach tends to focus on 
different error components. In fact, the methods used in the 
linkage literature to construct linkage error rates are some-
what inconsistent. We illustrate this problem below. 

Table 1 shows a 22×  contingency table tabulating the 
numbers of true matched and unmatched pairs and declared 
linked and nonlinked pairs selected by linkage systems. 
Estimates of linkage error rates can be constructed relative 
to the true totals shown in the columns. An estimate of false 
positive linkage error rate under the Fellegi and Sunter 
framework is 2121 /)|(μ̂ •== nnUAP  and that of false 
negative linkage error rate is 1213 /)|(ˆ

•==λ nnMAP  (see 
also Armstrong and Mayda 1993). These are the rates that 
SimRate is designed to estimate. They answer the question – 
“Of the set of true matched (or unmatched) pairs, what 
proportion is not correctly identified?”  

Table 1 
A Contingency Table for Evaluating Linkage Errors 

 

 True set  
Declared set Match (M) Unmatch (U) Declared total 

 11n  12n   
Link )( 1A  true positive false positive •1n  

 21n  22n   
Nonlink )( 3A  false negative true negative •2n  

True total 1•n  2•n  ••n  

 
Some linkage evaluations have also considered rates 

relative to the declared totals in the rows. For instance, 
Gomatam, Carter, Ariet and Mitchell (2002) used •112 / nn  
and labeled it the positive predictive power of the linkage 
system. Others, however, have labeled this as the false 
match rate (Belin and Rubin 1995) or false positive declared 
rate (Bartlett et al. 1993). Rates constructed in this manner 
answer the question – “Of the declared linked (or nonlinked) 
pairs, what proportions are wrong?” Both questions are 
important in selecting matched pairs and should be 
addressed. That is one of the appeals in employing both 
SimRate and Belin – Rubin, if possible. 

 
4. Simrate Weight Distribution 

     Methods to Estimate Linkage Error 
  

How to best estimate the linkage errors, given a limited 
budget and time schedule, is a difficult question. Accurate 
estimation of linkage errors should depend on at least two 
factors – the power of the identifying fields to unambi-
guously identify events that are true matches and the linkage 
method used. Taken together it is then possible, in a given 
setting, to specify linkage categories, estimate agreement 
probabilities, and determine match weights. 
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Following Newcombe and Kennedy (1962) and Jaro 
(1989), we adopt a weight distribution approach in our 
application that can take all these factors into consideration. 
The basic step is to first compute the match weight and 
order all possible configurations of agreement and dis-
agreement outcomes of the comparison fields by match 
weight. Then we plot the cumulative distribution function of 
the weights for matched and unmatched pairs, and use the 
resulting weight chart to determine thresholds to attain 
desired levels of false positive and false negative error rates. 

An ideal method to develop these curves might be to 
begin with a set of record pairs for which the truth is known. 
If resources are available, we could use a large set of true 
matched pairs, order them by match weight, and observe 
what proportion is above or below a given threshold. 
Similarly, we could take a large set of pairs, known to be 
true unmatched pairs, order them by weights, and again 
tabulate the proportion on either side of the threshold. The 
proportion of true matched pairs with weights below the 
threshold and the proportion of true unmatched pairs with 
weights above the threshold would then be estimates of the 
error rates associated with the way in which the matching 
algorithm is implemented. 

One method to approximate this “ideal” approach (see 
also Bartlett et al. 1993) is to sample record pairs and use 
manual review to determine the true match status. Once the 
true pairs are known, we can attach the match weights from 
whatever linkage system is being used and then develop 
cumulative weight distributions, as discussed above. This 
method is, of course, subject to the well-known time and 
other resource limitations of manual review and is seldom 
practical with a large sample. 

An alternative method is to generate the cumulative 
weight distributions through simulation. That is the heart of 
the SimRate approach. To explain in some detail, denote a 
record pair by r and a comparison field by 

Vvv ,,1( K= fields). The comparison outcome situations in 
our application included partial agreements and multiple 
outcome categories beyond the basic agreement and dis-
agreement categories (see also Newcombe 1988). There-
fore, we denote that each field v has vci ,,1 K=  outcome 
categories. The outcome indicator is ),,,( 1 vrvcrvrv yy K=y  
a vector of indicators showing the category into which pair r 
falls. One of the values of rviy  will be 1 and the others 0 for 
each field. 

The particular theory supporting the SimRate approach is 
to assume that ,rvy  has one multinomial distribution if pair 
r is a matched pair and a different multinomial distribution 
if it is an unmatched pair. We can then model the rvy  
vectors as having a multinomial distribution with para-
meters ),,( 1 vvcvv mm K=m  if the pair is a matched pair 
and parameters ),,( 1 vvcvv uu K=u  if the pair is an 

unmatched pair. Then the probability Pmvi = (field v 
category i agrees in pair )| Mrr ∈  is the conditional proba-
bility of agreement for field v category I, given that the 
record pair r is in the set M of true matched pairs. In 
contrast, the probability Puvi = (field v category i agrees in 
pair )| Urr ∈  is the conditional probability of agreement 
for field v category I, given that the record pair r is in the set 
U of true unmatched pairs. Assuming independence of the 
matching variables, ,,,1 Vv K=  we can specify the joint 
probability of ),,( 1 rVrr yy K=y  if a pair r is a match, as 

.)|(P
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The corresponding probability of the same configuration of 
data, if the pair is really an unmatched pair, is 
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SimRate uses Monte Carlo simulation methods to 
generate a large number of realizations of matched pairs and 
unmatched pairs using estimates of the probabilities vim  and 

.viu  For each simulated pair, a match weight ,rw  which 
applies to a given configuration of data, is calculated. For a 
given realization ,ry  a weight rw  is computed for the pair 
by summing the weights for the randomly generated 
categories that the pair fell into. The match weight rw  of a 
record pair is typically estimated as 
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See section 6 on the match weights used in our simulation. 
The cumulative distribution of these weights for the 

simulated matched pairs is then plotted as “Sim – M”. 
Similarly, the reverse cumulative distribution for the 
unmatched pairs is plotted to generate “Sim – U” (see Figure 
1, section 8, for an example of the simulation curves used in 
this study). The simulated proportion of matched pairs 
whose weights are below the cutoff is the estimate of the 
false negative error rate. The simulation proportion of 
unmatched pairs whose weights are above the cutoff is the 
estimate of the false positive error rate. 

This approach requires that empirical estimates be made 
of the distributions among the matching variables of both 
true matched and true unmatched pairs. Even though the 
weight algorithm may involve the assumption of inde-
pendence among matching variables, the actual data may 
show dependence. As long as artificial pairs can be gene-
rated that realistically follow the observed distribution of the 
data (incorporating any dependencies), then this method 
should provide suitable error rate estimates. 
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In our case study, we modeled data fields as having inde-
pendent multinomial distributions, but this may not be 
reasonable in other applications. The SimRate concept can 
apply to any algorithm where weights and a cutoff point are 
used for classification. Thus, methods other than Fellegi and 
Sunter (1969), like Belin and Rubin (1995), might also be 
evaluated in this way. If methods are needed to deal with 
dependent categorical variables, the multivariate multi-
nomial distributions in Johnson, Kotz, and Balakrishnan 
(1997, Chapter 26) may be appropriate. However, in appli-
cations similar to ours, the simplest procedure for 
accounting for dependence is to form cross-classifications of 
the variables that are related and to estimate probabilities for 
each cell in a cross-table. For example, if two variables with 

1c  and 2c  categories are associated, then we can estimate 
the joint probability, ,ijp  for each cell in the 21 *cc  table 
and use those in the simulation. Sparse data will naturally 
limit the number of cells for which this is feasible. But in the 
presence of sparse data, the penalty for model failure must 
be small. 

 
5. Record Linkage of MEPS Medical 

       Events  
Record linkage of MEPS medical events used five identi-

fying fields: event dates (year, month, day, and day-of-
week), medical condition codes, procedure codes, global-fee 
codes, and lengths (number of days) of hospital stay. These 
fields are described in more detail in Winglee, Valliant, 
Brick and Machlin (2000). A training sample from MEPS 
1996 was employed to derive match rules and outcome cate-
gories and to estimate the probabilities of agreement for 
each category, allowing for partial agreement and value 
specific outcomes. The same match rules were repeated 
each year with minor adjustments of the matching para-
meters. 

For the training set we used the linkage system Auto-
match (Matchware 1996) and the unique match algorithm to 
select linked pairs. In “unique” matching, a File A record is 
optimally linked to only one File B record (Jaro 1989). In 
addition, we used the many-to-many match algorithm to 
generate a random sample of nonlinked pairs to facilitate 
linkage error estimation. However, the methods for esti-
mating error rates, described below, apply to any software 
that implements the linkage methods based on match 
weights. They are not specific to Automatch. 

The tradeoff in determining the selection threshold for 
MEPS was between getting a high match rate and limiting 
mismatch linkage errors. A high threshold weight would 
minimize false positive (mismatch) errors at the expense of 
lowering the match rate and losing valuable data collected 
from medical providers. On the other hand, a low threshold 

would increase false positive error and may affect the 
allocation of expenditure data in a way that would require 
special analytic techniques to overcome and even then only 
with uncertainty. Since both data sources had reported on 
ostensibly the same medical events for the same persons 
over the same period, the strategy was to maintain a 
reasonably high match rate and to conduct a manual review 
of a limited number of questionable linked pairs after 
selection to assess the analytic impact of falsely accepting 
them. Based on this decision the average match rate for the 
annual MEPS medical records files was about 85 percent. 

The 1996 MEPS training sample M curve, labeled the 
“Tra – M” curve, was generated by applying match weights 
to “true” matched pairs for a random sample of 500 persons 
in MEPS 1996. For these persons, the manual review files 
contained 2,507 events from household respondents and 
2,804 events from medical providers. Knowledgeable data 
managers reviewed the events and selected 1,501 pairs. We 
considered these as the true matched pairs in this evaluation. 
The manually matched pairs were assigned the weights 
derived from our match specification to generate a cumu-
lative distribution function. 

The 1996 training sample U curve, labeled the “Tra – U” 
curve, was generated using a random sample of unmatched 
pairs. We used a simple random sampling with replacement 
method to select 500 events each from the matching files 
and employed a many-to-many match algorithm to generate 
all 250,000 possible event pairs. For these randomly 
selected sets of pairs, the chance of there being any correctly 
matched pairs is negligible; thus, the entire set was taken to 
consist of unmatched pairs. We applied the match weights 
from our matching specification and plotted the “Tra – U” 
curve equal to 1 minus the cumulative distribution of the 
weights of these pairs. Figure 1 in section 8 shows both the 
Tra – M and Tra – U curves for the 1996 MEPS. The curves 
shown in this figure were smoothed using a nonparametric 
lowess function (Chamber, Cleveland, Kleiner and Tukey 
1983) in S – PLUS 2000 (1999).  

6. Simrate Implementation in MEPS  
The SimRate weight distribution method used Monte 

Carlo simulation methods to generate separate sets of 
10,000 simulated matched and unmatched pairs for creating 
the weight curves. To generate the “Sim – M” weight 
distributions we estimated the probabilities vim  from linked 
pairs assigned by a unique matching algorithm. We used the 
“tuned” linkage system to select matched pairs from the 
1996 annual matching files and tabulated the observed 
frequencies for each outcome category for each of the five 
matching fields. The proportion of pairs that fell into 
category i of field v was then used as the estimate vim̂  of the 
probability .vim  
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For the unmatched pairs and the “Sim – U” curve, the viu  
probabilities for unmatched pairs were estimated using the 
same sample of  unmatched pairs used in  creating the  
“Tra – U” curve. The difference is that we used these pairs to 
observe the relative frequencies for each outcome category 
for each of the five matching fields among unmatched pairs. 
The proportion of pairs that fell into category i of field v was 
then used as the estimate viû  of the probability .viu  

For a simulated matched pair, a realization of the 
multinomial random variable rvy  was generated for each 
match field. For example, a configuration like (agreement 
on event date, agreement on length of hospital stay, 
agreement on the array of condition codes, joint agreement 
by type of procedure, and value specific agreement for a 
global-fee indicator) was generated using the match 
probabilities vim̂  for each outcome category. Similarly, for 
each unmatched pair, a realization was generated of a 
category for each of the five fields using the unmatched 
probabilities viû  discussed above. 

For a given realization ,ry  a weight rw  was computed 
for the pair by summing the weights for the randomly 
generated categories that the pair fell into. The actual 
weights used in our simulation were adjusted ones that we 
specified rather than ones defined directly by the matching 
software (see Winglee, et al. 2000). Thus, we are simulating 
the way in which matching would actually be implemented. 
To do this we calculated the match weight for both the 
matched and unmatched sets of 10,000 pairs and plotted the 
simulated match weight functions. 

Table 2 shows examples of some the partial agreement 
categories used for matching event date and the estimates of 

,ˆ,ˆ vivi um  and rw  used in SimRate simulation. We defined a 
total of 19 outcome categories for matching by event date, 9 
categories for duration of hospital stay, 27 categories by 
medical procedures, and 3 categories each for medical 
conditions and global fee. For example, for the outcome 
category exact agreement on event date, the estimate of vim̂  
was 0.69, meaning that 69 percent of the linked pairs had 
exact agreement on event date. The estimate of viû  for this 
outcome category was 0.003, showing that only 0.3 percent 
of the unlinked pair showed agreement on this field. The 
match weight for exact agreement on date of event was 8.52 
and that for complete disagreement (difference of more than 
two weeks apart and on different day of week) was – 6.64. 
(see Winglee, et al. 2000 for the match weights by match 
fields and outcome categories). 

We selected the match fields that were approximately 
independent in this case study. For example, we found no 
functional association between the date of medical events 
and other match fields like medical condition and length of 
hospital stay. For fields such as the indicators for surgery, 
radiology, and laboratory procedures, we used chi-square 

tests and found some dependence between the concurrence 
of surgery and radiology. To handle this situation, we 
estimated the joint probabilities and specified match rules to 
treat these procedure flags as a single match field (see 
section 4 above). Hence, we could then apply the 
independent multinomial distribution for simulation.  

Table 2 
Estimates of Multinomial Probabilies for Matched Pairs  

)ˆ( vim  and Unmatched Pairs ),ˆ( viu  and Match Weights )( viw  
for the Match Field Event Date 

 

Match rule for Event Date vim̂  viû  viw  

Missing 0.031 0.046 0.00 
Exact match 0.693 0.003 8.52 
Off +/– 1 day 0.068 0.006 5.71 
Off +/– 3 day 0.023 0.005 4.09 
Off +/– 5 day 0.014 0.005 2.47 
Off +/– 7 day 0.030 0.006 2.84 
Match by day of week only 0.014 0.034 – 3.64 
Disagree 0.003 0.547 – 6.64  
Table 3 shows the results of linkage error estimates from 

SimRate and the training curves at the threshold weight of 
1=w  for MEPS 1996, MEPS 1997, and MEPS 1998. 

SimRate was easy to repeat each year. Repeating the 
manual-based weight curves, however, depended in part on 
manual review and we had only one reliable training 
sample, that for 1996. Note that the linked pairs used in 
SimRate will naturally generate some percentage of false 
positives and false negatives, i.e., some matched and 
unmatched pairs are incorrect. Thus, the vim̂  probabilities 
computed in this way for the identified fields are subject to 
error. It would have been preferable to estimate the m 
probabilities from a “truth” set where we were confident 
that all matches were correct. However, the manually 
matched training sets we were able to produce were too 
small to yield stable estimates in all of the detailed match 
categories and manual selection is also imperfect. This 
difference may explain in part the slightly higher overall 
error rate estimates from SimRate than from the training 
sample weight curves.  

Table 3 
Weight Curve Methods to Estimate Linkage Error Rates at 

Threshold Weight 1, MEPS 1996 – 1998 
 

Method Error Rate 1996 1997 1998
False negative 5.2 6.5 5.8 SimRate simulation curves 
False positive 9.0 6.9 7.6 
False negative* 3.3 3.3 3.3 Training sample curves 
False positive** 5.5 6.4 5.7 

* Estimates from the 1996 Tra – M curve were used for all three 
years. 

 

** Estimates from the 1996 Tra – U curve used samples of 500 records 
from each match file and a total of 250,000 unmatched pairs. The 
1997 and 1998 estimates used different Tra – U curves employing 
samples of 1,000 records from each match file and a total of 
1,000,000 unmatched pairs. 
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7. Mixture Model Implementation  
      in MEPS  

A mixture modeling approach by Belin and Rubin (1995) 
views the distribution of observed match weights from a 
computerized linkage system as a mixture of weights for 
true matches and false matches. In principle, the mixture 
model method has two attractive features suitable for 
MEPS. First, it can handle repeated applications efficiently. 
When global parameter estimates of the transformed para-
meters and the ratio of the variances of the two distributions 
are available, these estimates can be applied to similar data 
for estimation. Since the MEPS record linkage is done 
annually, global estimates derived from early training 
samples could conceivably be applied for linkage error esti-
mation in later years when manual review samples were not 
available. 

The second advantage is that the mixture model can draw 
from multiple sets of parameter estimates from different 
training samples and can reflect variations. This feature is 
especially appealing for MEPS because manual review is a 
complex process and not necessarily always accurate. 
Hence, an alternative is to view the computer system 
selection as the truth and use them to provide an alternative 
set of parameter estimates. This process can also be repeated 
using training samples from more than one year. 

Our application of the Belin – Rubin approach used the 
same training samples from MEPS 1996 and a second 
training sample of the same size from 1997. Following 
Belin – Rubin’s examples, we applied the mixture modeling 
method using manually identified true and false match pairs 
from a one-to-one matching system (note that such systems 
provide relatively few false match pairs for estimation). We 
computed model estimates for MEPS 1996 and MEPS 1997 
assuming the manual selection to be the truth, and for 
testing the behavior of the model, we computed a second set 
of estimates assuming computer system selected match pairs 
to be the true pairs. 

Implementation involved two procedures – the Box and 
Cox (1964) procedure for global parameter estimation and 
the Calibrate procedure (Belin and Rubin 1995) to fit a 
mixture model for error rate estimation. Before applying 
Box – Cox, the weights were rescaled between 1 and 1,000. 
The Box – Cox transformation discussed by Belin and Rubin 
(1995) was  

1

1
)( −γ

γ

γ
−=Ψ

w

w
w r

r  

where rw  is the match weight for pair r, w  is the geometric 
mean of the rw  weight, and γ  is a parameter that is 
dependent on whether the pair is in the matched or 
unmatched set. 

For the mixture model procedure to be effective, the 
transformed weights should be approximately normally 
distributed. The untransformed weight distribution with our 
data showed bimodality and almost no overlap in match 
weight between matched and unmatched pairs (bimodality 
was also observed in Belin – Rubin 1995). For example, 
application of their transformation procedure to the 1996 
MEPS system pairs resulted in parameter estimates of 

7.585=w  and 15.1=γ  for the true matched pairs and 
1.113=w  and 48.0=γ  for the false matched pairs. The 

transformed weights, however, showed relatively little 
improvement towards normality. Since the match weights 
are the log of a product, or the sum of logs, we might hope 
that the weights would be normally distributed if there were 
many components in the sum. However, we had only five 
fields to use for matching. The small number of fields may 
have accounted in part for the lack of normality with our 
transformed data. 

Table 4 shows the results of applying the Belin – Rubin 
mixture model to MEPS 1996. This table shows the model 
estimated false match rates, the 95 percent confidence 
interval of the estimated rate, and the actual observed false 
match rate at the threshold weight of 1. Using the manual 
review pairs as the true matched pairs, the model estimate of 
the expected false match rate at the threshold of 1=w  was 
9.1 percent, with a 95 percent confidence interval ranging 
between 6.0 and 12.2. The actual observed false match error 
rate, however, was 14.5 percent, which is higher than the 
upper 95 percent confidence bound. Note that these are rates 
of the form •112 / nn  in Table 1. These are not the same rates 
estimated by SimRate and the weight curve approach.  

Table 4 
Mixture Model Linkage Error Estimates 

 

   Percentage false match error 
MEPS 1996 Expected 

rate 
Lower 

Bound* 
Upper 

Bound* 
Observed 

rate 
Manual match 9.1 6.0 12.2 14.5 
System match 0.9 0.6 1.2 0.0  
* The lower and upper bounds are the 95 percent confidence interval 

of the expected error rate.  
Since manual review may not always be accurate, an 

option, for the purpose of evaluation, is to treat the computer 
system linked pairs as the truth matched pairs, and use them 
for modeling. Under this assumption, the model estimate of 
the expected error rate is 0.9, and a 95 percent confidence 
interval between 0.6 and 1.2. The actual observed rate in 
this case, 0 percent, was a hypothetical outcome treating the 
computer-linked pairs as correct. Of course, in reality there 
will be some nonzero level of error so that the mixture 
model confidence interval is not necessarily wrong. 

We generated global parameter estimates using both the 
training sample manual selections and system selections for 
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MEPS 1996 and MEPS 1997 and used them as four sets of 
inputs to provide global estimates for modeling linkage 
error for MEPS 1998. This should be possible because the 
data remained similar and record pairs were selected using 
the same match rules for all 3 years. A difference was that 
manual review was not conducted for MEPS 1998 and we 
could not use the Box – Cox procedure for global parameter 
estimation for 1998 (because there was no separate manual 
indicator for true and false pairs). For this application, we 
use a bootstrap method in the Belin and Rubin Calibrate 
procedure to draw from multiple parameter sets to reflect 
uncertainties in estimation. This application, however, did 
not converge after 150 iterations of the estimation proce-
dure. We could only conclude that the global parameter 
estimates from earlier training samples failed to generalize 
and provide error rate estimates for repeated linkage 
applications. 

 
8. Concluding Comments and Analytic 

      Implications  
The process of threshold selection and linkage error 

estimation is an iterative process involving repeated cycles 
of observation, estimation, and modeling. Our case study 

employed modeling approaches for estimating linkage 
errors and for monitoring the predictive power of the 
linkage system. Both methods provided valuable informa-
tion for determining the linkage selection and for evaluating 
the quality of the declared matched pairs as we found in 
MEPS. 

The weight curves approach of estimation has the appeal 
that one can choose a selection threshold to attain the 
acceptable linkage error level. For example, Figure 1 shows 
the training sample and the SimRate simulation weight 
curves based on the 1996 MEPS matching files. A vertical 
line is drawn at the selection threshold weight of ;1=w  the 
error levels for 1996 MEPS (shown in Table 3) were then 
estimated by the cumulative percentage at threshold level. 
By sliding this threshold, one can aim to minimize the total 
linkage error by selecting a threshold at the crossing point of 
the M and U curves. In this case study, the optimal threshold 
suggested by both sets of weight curves is fairly consistent. 
We included a likelihood ratio scale in this figure to provide 
a rough likelihood interpretation of the match weight. For 
example, at the match weight of ,1=w  the likelihood ratio 
score is 2. This means that for records with a match weight 
of 1=w  or above, the relative likelihood of being true pairs 
is at least 2 to 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 1. Weight Curves for MEPS 1996 using the SimRate and Training Sample Methods; the dashed vertical reference  
 line shows the threshold value of 1. 
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For linked pair quality, Figure 2 shows the distributions 
of false match rate estimates from mixture modeling. This 
figure shows the model estimated false match rate, the upper 
and lower 95 percent confidence bounds of the error rate 
estimates, and the actual observed rates. Panel 1 shows the 
estimates treating the computer system linked pairs as the 
true matched pairs. Panels 2 and 3 show the estimates from 
the 1996 MEPS and 1997 MEPS training samples. The 
difference between Panels 2 and 3 shows the inconsistency 
of manual selection by different reviewers in our 
application. In all three panels, the 95 percent confidence 
interval of the model estimates failed to cover the true 
observed values. Ideally, one would use both Figure 1 and 
Figure 2 together to guide the choice of selection thresholds. 

We have found SimRate to be an informative and 
flexible tool for determining selection thresholds and 
estimating error rates in our application. Given multinomial 
or other models for the matching variables, the SimRate 
method provides error rate estimates that would be obtained 
from repeated application of the matching algorithm to a 
large number of candidate record pairs. It is also flexible in 

accommodating the choices of comparison sets of pairs for 
computing rates. 

While our application achieved the matching and error 
rate estimation goals for MEPS, more work might be done 
prior to or during the analysis stage. Space does not permit 
us to develop these in the context of the current case study 
but two general approaches might be mentioned. First, it is 
possible to reweight the final results and adjust for false 
nonmatches – treating them in a manner analogous to unit 
nonresponse (e.g., as in Oh and Scheuren 1980). To handle 
mismatches, the ideas in Scheuren and Winkler (1993 and 
1997), and Lahiri and Larsen (2002) might be worth 
consulting. Whether these added steps are needed, of course, 
depends on the final uses to which the linked data will be 
put. 
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The Effect of Record Linkage Errors on Risk Estimates in Cohort 
Mortality Studies 

D. Krewski, A. Dewanji, Y. Wang, S. Bartlett, J.M. Zielinski and R. Mallick 1 

Abstract 

The advent of computerized record linkage methodology has facilitated the conduct of cohort mortality studies in which 
exposure data in one database are electronically linked with mortality data from another database. This, however, introduces 
linkage errors due to mismatching an individual from one database with a different individual from the other database. In 
this article, the impact of linkage errors on estimates of epidemiological indicators of risk such as standardized mortality 
ratios and relative risk regression model parameters is explored. It is shown that the observed and expected number of 
deaths are affected in opposite direction and, as a result, these indicators can be subject to bias and additional variability in 
the presence of linkage errors. 
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1. Introduction  
In recent years, a number of historical cohort studies 

have been carried out in environmental epidemiology using 
existing administrative databases as information sources 
(Howe and Spasoff 1986; Carpenter and Fair 1990). In 
general terms, this involves linking records of human 
exposure to environmental hazards with records on health 
status, often using computerized methods for matching 
individual records from different databases. In a cohort 
mortality study, the vital status of each cohort member is 
determined by linkage with mortality records maintained by 
government agencies. Excess mortality within the cohort 
relative to the general population may be due to exposures 
experienced by the cohort members. 

In specific terms, record linkage is the process of 
bringing together two or more separately recorded pieces of 
information pertaining to the same entity (Bartlett, Krewski, 
Wang and Zielinski 1993). Procedures for computerized 
record linkage (CRL) have become highly refined, using 
sophisticated algorithms to evaluate the likelihood of a 
correct match between two records (Hill 1988; Newcombe 
1988). Statistics Canada has developed a CRL system called 
CANLINK which is capable of handling both single file 
linkages and linkages between two separate files (Howe and 
Lindsay 1981; Smith and Silins 1981). In this system, 
weights reflecting the likelihood of a match are attached to 
pairs of records. Two thresholds are set: potential matches 

with linkage weights above the upper threshold are 
considered to be links whereas potential matches with 
weights below the lower threshold are considered to be 
nonlinks. Potential matches with weights between the upper 
and lower thresholds are resolved using additional in-
formation when available. Otherwise, a single threshold is 
selected to discriminate between links and nonlinks. 

The confidentiality of records protected under the 
Statistics Act is strictly maintained in any study in which 
record linkage is employed. All studies requiring linkage 
with protected data bases must satisfy a rigorous review and 
approval process prior to implementation, following well-
established procedures for data confidentiality (Singh, 
Feder, Dunteman and Yu 2001). All linked files with 
identifying information remain in the custody of Statistics 
Canada (Labossière 1986). 

Computerized record linkage methods have  been used to 
link environmental exposure data to the Canadian Mortality 
Data Base (CMDB). For example, a study of Canadian farm 
operators was initiated to investigate possible relationships 
between causes of death in over 326,000 farm operators in 
Canada and various socio-demographic and farming 
variables, particularly pesticide use (Jordan-Simpson, Fair 
and Poliquin 1990). In this study, the CMDB was linked 
with the 1971 Census of Population and the 1971 Census of 
Agriculture. Another ongoing large-scale study is based on 
the National Dose Registry (NDR) of Canada (Ashmore and 
Grogan 1985, Ashmore and Davies 1989). The NDR 
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contains information on occupational exposures to ionizing 
radiation experienced by over 400,000 Canadians dating 
back to 1950. The NDR has recently been linked to the 
CMDB to investigate associations between excess mortality 
due to cancer and occupational exposure to low levels of 
ionizing radiation (Ashmore, Krewski and Zielinski 1997; 
Ashmore, Krewski, Zielinski, Jiang, Semenciw and 
Létourneau 1998). More recently, the NDR has been linked 
to the Canadian Cancer Incidence Database (Sont, Zielinski, 
Ashmore, Jiang, Krewski, Fair, Band and Létourneau 2001). 
A comprehensive list of other health studies based on 
linking exposure data with the CMDB has been compiled 
by Fair (1989). 

The success of record linkage studies depends on the 
quality of databases being linked (Roos, Soodeen and 
Jebamani 2001). Using population based longitudinal 
administrative data, Roos et al. examined data quality issues 
in studies of health and health care. Ardal and Ennis (2001) 
considered systematic errors in administrative databases 
involved in secondary analysis of health information. 
Although record linkage studies will benefit from the use 
high quality data, limitations in data quality may be offset to 
a certain extent by the large sample sizes found in many 
administrative data bases. 

Record linkage studies have several advantages over 
traditional epidemiological studies. By using existing 
administrative databases, the need to collect new data for 
health studies is circumvented, and large sample sizes can 
often be achieved with relatively little effort. Depending on 
the nature of the databases utilized, record linkage provides 
an inexpensive way of exploring many possible associations 
in epidemiological studies. Record linkage also has certain 
disadvantages. There is generally little control over the 
information collected, and there can be appreciable loss to 
follow-up. Another disadvantage of record linkage is the 
occurrence of linkage errors, which is the focus of this 
paper. Inevitably, some records that match will fail to be 
linked, and other nonmatching records will be incorrectly 
linked. 

Relatively little work has been done to determine the 
impact of these linkage errors on statistical inferences. 
Neter, Maynes and Ramanathan (1965) used a simple linear 
regression model to analyze the impact of errors introduced 
during the matching process. Their results indicate that 
linkage errors inflate the residual variance and introduce 
bias into the estimated slope parameter. Winkler and 
Scheuren (1991) derived an expression for the bias in 
estimates of linear regression coefficients due to linkage 
errors. Advances in the estimation of linkage error rates by 
Belin and Rubin (1991) enabled Scheuren and Winkler 
(1993) to implement an improved bias adjustment 
procedure. Linear regression methods for the analysis of 

computer matched data files are further discussed by 
Scheuren and Winkler (1997). 

The purpose of this paper is to explore the impact of 
linkage errors on statistical inferences in cohort mortality 
studies. Relative risk regression models employed in the 
analysis of data from such studies are described in section 2, 
and expressions for the observed and expected numbers of 
deaths based on these models developed. The impact of 
linkage errors on the observed and expected number of 
deaths and person-years at risk is discussed in section 3. An 
analysis of the impact of linkage errors on estimates of 
standardized mortality ratios (SMRs) and relative risk 
regression parameters is given in section 4. Both types of 
errors can cause bias and additional variability in estimates 
of these parameters. Our conclusions are presented in 
section 5. 

 
2. Relative Risk Regression Models  

Statistical methods for the analysis of cohort mortality 
studies are well established (Breslow and Day 1987). The 
primary objective of such analysis is to determine if the 
exposure to the agent of interest increases the mortality rate 
among cohort members. Mortality is characterized by the 
hazard function, which specifies the death rate as a function 
of time. Letting T  denote the time of death, the hazard 
function at time u  is formally defined as 

.
}|{Pr

lim)(
0 u

uTuuTu
u

u Δ
≥Δ+<≤=λ

↓Δ
 (1) 

Let )(uiλ  denote the hazard function for a specific cause of 
death at time u  for individual Ni ...,,1=  in a cohort of 
size ,N  and let )(uiz  represent a corresponding vector of 
covariates specific to that individual. We assume that the 
effect of these covariates is to modify the baseline hazard 

)(* uλ  in accordance with the relative risk regression model 

)},({)()( * uuu ii zβ′γλ=λ  (2) 

where γ  is a positive function of the covariates and β  is a 
vector of regression parameters. 

Two special cases of the general relative risk regression 
model of particular interest are the multiplicative and 
additive risk regression models. Define the function γ  in (2) 
by 

.
1)1(

)(log
ρ

−+=γ
ρz

z  (3) 

When ,1=ρ  the general relative risk regression model 
reduces to be the multiplicative risk regression model  

)},({exp)()( * uuu ii zβ′λ=λ  (4) 
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This proportional hazards model was introduced by Cox 
(1972), and is widely used in the analysis of mortality data 
(Kalbfleish and Prentice 1980). The additive risk regression 
model  

)()()( * uuu ii zβ′+λ=λ  (5) 

occurs as a limiting case as .0→ρ  
Let 0

it  and 1
it  be the age at the time of entry into the 

study, and the age at the time of loss to follow-up (due to 
withdrawal from the study, termination of the study, or 
death) for the thi  subject of the cohort, respectively. Let 

1=δi  or 0, according to whether the thi  individual has or 
has not died at the time of loss to follow-up. The log-
likelihood function based on the relative risk model (2) may 
be written as 
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When there is a single covariate ,1)( ≡uzi  the maximum 
likelihood estimate of }exp{β=θ  reduces to the standard-
ized mortality ratio SMR = OBS/EXP, where OBS = 
∑ = δN

i i1  and EXP = ∑ =
N
i ie1  are the observed and expected 

numbers of deaths, respectively, with ∫ λ=
1

0 .)(*i

i

t

ti duue  
Maximization of the likelihood function (6) can be 

computationally burdensome with large sample sizes. 
Breslow, Lubin and Langholz (1983) simplify the likelihood 
by assuming that the covariates take on constant values 
within states through which a subject passes during the 
course of the study. The states are defined by cross-
classification of the covariates of interest. Specifically, 
suppose that there are J  such states }...,,1;{ JjS j =  such 
that ji u zz =)(  whenever the thi  subject is in jS  at time .u  
These states are mutually exclusive and exhaustive, so that 
at any given time ,u  each member of the cohort will fall 
into one and only one state. The log-likelihood function (6) 
may then be written as 
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is the contribution to the expected number of deaths from all 
person-years of observation in the state ,jS  and jjd  
denotes the total number of deaths in that state. Letting 

}),{(log)( jzβ′γ=βΛ j  the maximum likelihood estimate 
β̂  of β  is obtained as the solution to the score equation  
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3. The Effect of Linkage Errors on the Observed 
      and Expected Numbers of Deaths  

Two principal types of errors can occur when linking 
data files in CRL (Fellegi and Sunter 1969). A false positive 
occurs when a member of the cohort who is alive is 
incorrectly identified as dead, and a false negative occurs 
when a deceased member is considered to be alive. More 
specifically, for the mathematical development to follow, a 
false positive occurs in a particular state when an individual 
who remains alive throughout this state is incorrectly 
labelled as dead in this state. Similarly, a false negative 
occurs in a particular state when a member, who died before 
or during the sojourn in this state, is considered to be alive 
throughout this state. Within a particular state, false 
positives and false negatives thus represent special cases of 
misclassification error discussed by Anderson (1974, 
chapter 6.2.1). In this section, we will discuss the effect of 
these two types of linkage errors on the observed and 
expected numbers of deaths, respectively. To do this, we 
first define sets of indices within states which will be used to 
represent sets of correctly matched and incorrectly matched 
records.  
3.1 Linkage Errors  

Let jA  and jD  denote the set of labels for those individ-
uals in the cohort who remain alive throughout state ,jS  
and those who are dead in ,jS  respectively. Write jjD  as 
the subset of jD  corresponding to those individuals who 
have died in .jS  Let ,L

jA  L
jD  and L

jjD  denote the corre-
sponding sets in the presence of linkage errors. We further 
define P

jD  as the set of labels of those alive in jS  (that is, 
in )jA  but labeled as dead in jS  corresponding to the false 
positives in .jS  Similarly, N

jA  is the set of those dead in 

jS  (that is, in )jD  but labeled as alive in jS  corresponding 
to the false negatives in .jS  Let us also write P

jjD  as the 
subset of P

jD  corresponding to those who are labeled to 
have died in jS  and, similary, N

jjA  as the subset of N
jA  

who have died in jS  (that is, in ).jjD  These sets satisfy the 
relations =∪−= L

j
N
j

P
jj

L
j DADAA ,)( ,)( P

j
N
jj DAD ∪−  

and .)( P
jj

N
jjjj

L
jj DADD ∪−=  

The effect of linkage errors on the likelihood function in 
(7) may be described as follows. Let 0

ijt  denote the time at 
which the thi  individual enters, actually or by linkage error, 
the thj  state .jS  Similarly, 1

ijt  denotes the time of death (if 
it occurs, actually or by linkage error) for the thi  individual 
in jS  and 2

ijt  the time of leaving ,jS  actually or by linkage 
error. Note that, if 1

ijt  exists, it is less than or equal to .2
ijt  

Let us, for the sake of simplicity, assume that ,1
ijt  if exists, is 

equal to ;0
ijt  that is, all the deaths in a state occur at the 

corresponding entry times in that state. Although this will 
underestimate the expected number of deaths, for the 
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purpose of studying bias, it may not be that objectionable. 
Assuming all the deaths to occur at the times of leaving the 
corresponding states also offers similar simplification. 
Using (8) and the decomposition of ,L

jA  the expected 
number of deaths L

je  in jS  the presence of linkage errors 
can be written as 
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For notational convenience, let us write ),( jiTλ  for 

∫ λ
2

0 )(*ij

ij

t

t
duu  in what follows. The term jeΔ  represents 

the bias in the expected number of deaths in the thj  state 
due to linkage errors. It follows from (10) and (11) that the 
false positives tend to reduce the expected number of deaths 
and the false negatives tend to increase the expected number 
of deaths. 

Using the decomposition for ,L
jjD  the observed number 

of deaths L
jjd  in the presence of linkage errors may be 

written as  
,jjjj

L
jj ddd Δ+=  (13) 

where 
,N

jj
P
jjjj add −=Δ  (14) 

with P
jjjj dd ,  and N

jja  denoting the number of individuals in 
the sets P

jjjj DD ,  and ,N
jjA  respectively. The term jjdΔ  

represents the difference between the observed number of 
deaths in the thj  state due to linkage errors. It follows from 
(13) and (14) that the false positives will increase the 
observed number of deaths and the false negatives will 
reduce the observed number of deaths. 

Vital status is often determined by linkage with the 
CMDB, which is generally much larger than the cohort of 
interest. When the exposure records of a live individual are 
incorrectly associated with those of a dead person, the 
deceased individual usually does not belong to the cohort. 
Thus, the person-years at risk contributed by the person 
remaining alive will end prematurely in the year of 
presumed death; the lost person-years at risk correspond to 

the time period from the year of presumed death until the 
end of the follow-up. On the other hand, when the exposure 
records of a dead individual are incorrectly associated with 
those of a live person, the person-years at risk contributed 
by this individual will include an extra period from the 
actual death-year to the end of the follow-up. Thus, false 
positives will deflate the number of person-years at risk and 
false negatives will inflate the number of  person-years at 
risk in the cohort.  
3.2 Expectations and Variances of Differences 

Between the Observed and Expected Numbers 
of Deaths  

The effect of linkage errors on the observed and expected 
numbers of deaths depends on the false positive and false 
negative rates. Let P

jp  and N
jp  denote the false positive 

and false negative rates, respectively, in ...,,1for, =jS j  
,J  which are assumed to be constant within jS  and same 

for all the individuals in jA  and ,jD  respectively. This as-
sumption is reasonable whenever individuals in the same 
state are highly homogeneous, particularly with respect to 
attributes such as the quality of personal identifiers that 
influence linkage error rates. Although this idealized as-
sumption is unlikely to be fully satisfied in practice, it 
affords considerable simplification in the subsequent evalu-
ation of the effects of linkage errors. Formally, )( N

j
P
j pp  is 

the conditional probability that an individual in )( jj DA  is 
labeled dead (alive) in .jS  That is, ]|[ j
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P
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Let us write N
jjj ada ,,  and P
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jjj ADA ,,  and ,P
jD  respectively. Then, 

note that, P
jd  follows a ),( P

jj paBinomial  distribution and 
N
ja  follows a ),( N

jj pdBinomial  distribution. Also, P
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jjj paBinomial  distribution, where P
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conditional probability that an individual in jA  is labeled to 
have died in .jS  That is, .]|[ j
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distribution, where N
jjp  is the conditional probability that an 

individual in jjD  is labeled as alive in .jS  That is, =N
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jj DiAiP ∈∈  Although there is no trivial relationship 

between N
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jjp  in general, it is reasonable to assume 
N
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N
j pp =  in this context of linkage errors. 
Assuming that linkage errors related to different 

individuals are independent, the expectation and variance of 
the difference in the observed number of deaths in ,jS  
given by jjdΔ  in (14), are 

N
jjj

P
jjj

N
jj

P
jjjj pdpaaEdEdE −=−=Δ ][][][  (15) 

and 

).1()1(

][][][
N
j

N
jjj

P
jj

P
jjj

N
jj

P
jjjj

ppdppa

aVdVdV

−+−=

+=Δ
 

(16)
 



Survey Methodology, June 2005 17 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

Since jA  and jjD  consist of different sets of individuals, 
P
jjd  and N

jja  are independent. 
Similarly, the expectation and variance of the difference 

in the expected number of deaths in ,jS  given by jeΔ  in 
(11), can be calculated as follows. For this purpose, it is 
convenient to write P

je  and N
je  in terms of the following 

indicator variables. For ,jAi ∈  define }{ P
jij DiI ∈=ξ  and 

}.{ P
jjijj DiI ∈=ξ  Also, for ,jDi ∈  define }.{ N

jij AiI ∈=ψ  
Then, from (12) and the definitions of P
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jA  we 

have 
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jjDi ij ,  which are useful to derive (15) and (16). From 
(17) and (18), we have 
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since jA  and jD  consist of different sets of individuals. 
The results (15) – (16) and (19) – (20) indicate that 

record linkage errors will lead to bias and additional 
variation in the observed and expected number of deaths. 
Minimizing the variance terms in (16) and (20) is difficult 
since the two error rates P

jp  and N
jp  are not functionally 

independent. Generally, decreasing P
jp  will result in an 

increase in N
jp  and vice versa (see section 5 for further 

discussion of this point). Although these error rates are 
independent of the underlying relative risk regression model 
γ  in (2), the mean square error obtained by combining the 
expectation and variance terms cannot be minimized 
without specification of the baseline hazard ,)(* uλ  which 
appears in .λT  

 
4. The Effect of Linkage Errors on Estimates of 

       SMRs and Regression Coefficients  
4.1 Standardized Mortality Ratios  

To determine the effect of linkage errors on the SMR, we 
replace the actual observed and expected numbers of deaths 

jjd  and je  by the observed and expected number of deaths 
L
jjd  and L

je  in the presence of linkage errors in the 
expression SMR = ∑ ∑ ./ jjj ed  Letting LSMR  denote the 
standardized mortality ratios in the presence of linkage 
errors, we have 
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It follows, from (10) – (14), that the false positives will 
increase the SMR, whereas the false negatives will decrease 
the SMR. 

By using a first order Taylor series approximation of 

LSMR  about SMR,  the difference −=Δ LSMRSMR  
SMR  can be expressed as 
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Then, the mean and variance of the relative difference in the 
SMR can be approximated by 
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respectively. The right hand side of (23) can be easily 
calculated by using (15) and (19). In order to calculate the 
right hand side of (24), note that 
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Without loss of generality, let us assume, for ,jj ′<  that 
00
jiij tt ′≤  for the same individual i  (alive or dead) in jS  and 

;jS ′  that is, the entry time in jS  is the same or earlier than 
that in .jS ′  We then have, for ,jj ′<   
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Using (25) – (32), the variance of the relative difference 
SMR/SMRΔ  can be approximated by the right hand side 

of (24). Two conclusions can be drawn from (23) and (24). 
First, linkage errors can lead to bias in the estimate of the 
SMR. Second, both types of linkage errors introduce 
additional variation into estimates of the SMR. Note that the 
first term in (32) is dominated by the first term in (29) for 

<′
P
jp  0.5, and the negative covariance term (28) is 

dominated in the calculation of the variance in (25). 
Therefore, the additional variance (24) is strictly positive, 
since both the false positive and false negative rates are 
positive.  
4.2 Relative Risk Regression Parameters  

To determine the effect of linkage errors on regression 
parameter estimates, consider first the general relative risk 
regression model (2). Replacing  the observed and expected 
numbers of deaths jjd  and je  in the log-likelihood function 

(7) with the observed and expected numbers of deaths in the 
presence of linkage errors L

jjd  and ,L
je  we have 
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Using (9), the first summation in (36) is zero. Consequently, 
since βΔΔ je  is small, βΔ  may be approximated by 
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It follows from (37) that 
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calculated from (15) and (19). Further, 
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,]}ˆ{,}ˆ{[Cov jjjjjjjjjj eded ′′′′′ Δβ′γ+ΔΔβ′γ+Δ=Θ zz  

which can also be easily obtained using (16), (20) and 
).32()28( −  

In the special case of the multiplicative risk model (4), 
the difference βΔ  due to linkage errors may be 
approximated by  
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.))ˆ(exp...,,)ˆ((exp 11 JJ ee Δβ′Δβ′ zz  Note that the weight 
matrix W  is the Fisher information matrix for .β̂  It follows 
from (38) that  
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where )...,,( 1 Jππ=Π′  with jπ  being same as ,jα  but 
}ˆ{ jzβ′γ  replaced by .)ˆ(exp β′jz  

Further,  
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where Ψ  is the matrix of jj ′Θ ’s with }ˆ{ jzβ′γ  replaced 
by .)ˆ(exp β′

jz  Note that (40) – (42) are special cases of 
−)37( (39), respectively, written in matrix notation. 
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Thus, (44) may be viewed as a special case of (22). 
The preceding results indicate that both false positives 

and false negatives will introduce bias and additional 
variation into the estimates of relative risk regression 
parameters. The only negative contribution to this additional 
variance (39) is through ,],[Cov jjjj dd ′′ΔΔ  given by 
(28), and the first term in (32) (see .)jj ′Θ  Using the same 
argument as in section 4.1, it follows that this additional 
variance is strictly positive. 

 
5. Conclusions  

Record linkage is now a well-established technique in 
epidemological studies of population health risks. By 
linking information on individual exposures from one 
database to information on health outcomes in another 
database, it is possible to construct large-scale informative 

databases on risks to health of populations and population 
subgroups. The success of such studies will depend to a 
large extent on the quality of the two databases being linked, 
including the amount of information on individual 
identifiers used to link individuals in the two databases. In 
most studies, the accuracy of the linkage is examined by 
estimating the false link (false positive) and false nonlink 
(false negative) rates associated with the linkage process. In 
practice, this is usually done by drawing a sample of linked 
and nonlinked records, and determining the accuracy of the 
linkages in the sample using auxiliary information drawn 
from other sources. 

Although CRL has been used for some time in cohort 
mortality studies, the impact of linkage errors on the 
reliability of statistical inferences drawn from such studies 
has not been subjected to detailed investigation. The 
theoretical results presented in this paper address this 
issue.These results show that in addition to inflating the 
observed number of deaths, false positives will tend to 
deflate the expected number of deaths. Conversely, false 
negatives inflate the expected numbers of deaths and deflate 
the observed number of deaths. Linkage errors were shown 
to introduce bias into estimates of SMRs. Relative risk 
regression coefficients are also subject to bias, the direction 
of which depends on the nature of the regression coefficient. 
In addition to these biases, linkage errors introduce 
additional uncertainty into estimates of both SMRs and 
regression coefficients. 

Although we make the simplifying assumption of 
,01

ijij tt =  one can derive the relevant expressions for bias and 
increased variability without this assumption; however, the 
expressions are too complex to offer additional insight into 
the effects of linkage errors. This is also true of the 
assumption that .N

j
N
jj pp =  There is a technical issue with 

the definition of jA  for the state(s) corresponding to the last 
age interval, which is usually open up to ∞  on the right 
hand side. In such state(s), the assumption that 01

ijij tt =  will 
be problematic if the probability of dying in this last interval 
is appreciable. This problem may be circumvented by 
assuming the human life span to have a finite upper limit. 

As discussed at the end of section 3.1, false positives 
occur primarily when an individual who is alive at the end 
of the follow-up period is incorrectly linked with a dead 
person. However, a person who died in one of the states jS  
may be falsely linked with another person with an earlier 
death time. This leads to a false positive which persists until 
the actual time of death; the analysis in section 3 allows for 
this type of error. Similarly, a dead person may be falsely 
linked with another person dying at a later time, who is not 
alive at the end of follow-up. This case is treated as a false 
negative only up to the false death time. At this false time of 
death, this will contribute incorrectly to the number of 
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deaths, an error which has not been considered in section 3. 
However, this type of error would not normally be detected 
in typical record linkage studies in which a simplified 
manual check is used to identify false positives and false 
negatives. Since this type of error is likely to be rare, the 
effect is expected to be small. 

In order to further explore the potential impact of linkage 
errors, let jτ  be the upper age limit for the thj  state .jS  
(Note that some of the jτ ’s may be equal.) Then, letting α  
denote the probability of a linkage error (of either type), the 
false positive and negative rates, P

jp  and ,N
jp  may be 

written as ][ jTP τ≤α  and ,][ jTP τ>α  respectively. In 
particular, ,][ 1 jj

P
jj TPp τ≤<τα= −  where 1−τ j  is the 

lower age limit for the thj  state, and .N
j

N
jj pp =  Therefore, 

the false positive rates may be greater than the false negative 
rates in the older age groups, with the reverse happening in 
the younger age groups. Assuming a similar pattern in the 
size of the jD ’s and jA ’s, some cancellation of terms may 
take place in the calculation of ][ jeE Δ  in (19) and 

][ jjdE Δ  in (15). This cancellation effect will reduce the 
expected bias in the SMR and the relative risk regression 
parameters given in (23) and (38), respectively. 

Although we have considered only all-cause mortality in 
this article, cause-specific mortality can be examined by 
simple modifications of the definitions of L

jjjj DD ,  and 
.P

jjD  These sets should then consider only those deaths 
from the specific cause of interest. Consequently, jjd  and 

je  should denote, respectively, the observed and expected 
number of deaths of the specific type in .jS  The hazard 
function in (1) and (2) should relate to the specific type of 
death, with )(* uλ  being the corresponding baseline cause-
specific hazard rate. Finally, the indicator iδ  in section 2 
should indicate the specific type of death. 

While the preceding analytical results shed considerable 
light on the effects of linkage errors in cohort mortality 
studies, it is important to investigate such effects under 
conditions as close as possible as may be encountered in 
practice. To this end, we conducted a computer simulation 
study based on actual data from the National Dose Registry 
of Canada, in which the introduction of false links and false 
nonlinks with known probabilities have been used to further 
evaluate the impact of linkage errors on estimates of cancer 
risk (Mallick, Krewski, Dewanji and Zielinski 2002). These 
simulation results corroborate the theoretical findings of this 
paper.  

While the results reported here may help to clarify the 
impact of linkage errors on statistical inference, methods 
that take such errors into account in the statistical analyses 
remain to be developed. Such methods may be based on 
response error models employed in survey sampling, used in 
conjunction with traditional statistical methods for analyses 
of cohort mortality data. Research in this area is underway. 
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Analysis of Experiments Embedded in Complex Sampling Designs 

Jan A. van den Brakel and Robbert H. Renssen 1 

Abstract 

At national statistical institutes, experiments embedded in ongoing sample surveys are conducted occasionally to investigate 
possible effects of alternative survey methodologies on estimates of finite population parameters. To test hypotheses about 
differences between sample estimates due to alternative survey implementations, a design-based theory is developed for the 
analysis of completely randomized designs or randomized block designs embedded in general complex sampling designs. 
For both experimental designs, design-based Wald statistics are derived for the Horvitz-Thompson estimator and the 
generalized regression estimator. The theory is illustrated with a simulation study. 
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1. Introduction 
  

A part of survey methodology is to consider and test 
alternative survey methods, to improve the quality and 
efficiency of sample survey processes at national statistical 
institutes. Large-scale field experiments embedded in 
ongoing surveys are particularly appropriate to quantify the 
effect of alternative survey implementations on response 
behavior or estimates of finite population parameters. At 
Statistics Netherlands, for example, the effects of alternative 
questionnaire designs, different approach strategies or 
different advance letters have been investigated on both 
kinds of parameters, see Van den Brakel and Renssen 
(1998), Van den Brakel (2001), and Van den Brakel and 
Van Berkel (2002). At national statistical institutes, sample 
surveys are generally kept unchanged as long as possible in 
order to construct uninterrupted time series of estimates of 
population parameters. It is inevitable, however, that survey 
processes are adjusted from time to time. Embedded 
experiments can be applied to detect and quantify possible 
trend disruptions in these time series due to necessary 
changes to a sample survey and provide a safe transition 
from an old to a new survey design. Running the old and 
new surveys concurrently by means of an embedded 
experiment creates the possibility of falling back on the old 
approach for regular publication purposes if the new 
approach turns out to be a failure.  

Applications of embedded experiments in the literature 
are aimed at the estimation of the bias or the various 
variance components in total measurement error models. 
Mahalanobis (1946) introduced the idea of embedding 
experiments in ongoing sample surveys, probably for the 
first time, as interpenetrating subsampling to test interviewer 
differences under simple random sampling and unrestricted 

randomization of sampling units to interviewers. Fellegi 
(1964) and Hartley and Rao (1978) generalized this 
approach to estimate response variances under more 
complex sampling designs and restricted randomization of 
sampling units. Fienberg and Tanur (1987, 1988, 1989) 
discuss the differences and parallels between the theory of 
experimental designs and finite population sampling and 
how the statistical methodology employed in both fields can 
be combined in a useful and natural way in the design and 
analysis of embedded experiments. In their 1988 article, 
they give a comprehensive overview of applications of 
embedded experiments mentioned in the literature. 

The typical situation considered in this paper is a field 
experiment designed to compare the effect of K different 
survey implementations, i.e., the treatments, on the main 
estimates of the finite population parameters of a current 
survey. To this end, a probability sample that is drawn from 
a finite target population is randomly divided into K 
subsamples according to an experimental design. Each sub-
sample is assigned to one of the K treatments. The experi-
mental designs considered in this paper are completely 
randomized designs (CRD’s) and randomized block designs 
(RBD’s) where sampling structures like strata, primary 
sampling units (PSU’s), clusters or interviewers are 
potential block variables. Generally one large subsample is 
assigned to the regular survey, which will be used for 
official publication purposes and which will simultaneously 
serve as the control group in the experiment. The purpose of 
embedded experiments is the estimation of finite population 
parameters under the different survey implementations and 
to test hypotheses about the differences between estimates 
of those parameters.  

At first instance, a standard model-based approach might 
be considered for this analysis. Since experimental units are 



24 Van den Brakel and Renssen: Analysis of Experiments Embedded in Complex Sampling Designs 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

drawn by means of a complex sampling design without 
replacement from a finite population, the application of such 
an approach might result in design-biased parameter and 
variance estimates. This makes the analysis results incom-
mensurate with the parameter and variance estimates of the 
ongoing survey, which complicates the interpretation of the 
results in the design-based setting of the sample survey. To 
make the analysis more robust to departures from the 
assumed model, a design-based analysis that accounts for 
the sampling design should be applied. 

Before we present our design-based approach two 
alternatives are mentioned that, at first glance, seem to be 
correct. We briefly argue, however, that both alternatives 
generally give invalid results. The first alternative is to apply 
a design-based linear regression analysis that accounts for 
the sampling design to estimate and test hypotheses about 
the K treatment effects in the regression model. This 
approach easily results, however, in wrong design variances, 
since the randomization of the experimental design is 
ignored. The main analysis objective of embedded experi-
ments is to compare the effect of alternative survey 
approaches on the main estimates of the current sample 
survey. A linear regression analysis doesn’t precisely meet 
this objective, since the treatment effects in the regression 
model are generally not equal to the differences between the 
subsample estimates.  

The second alternative is to apply a design-based 
inference for comparing domain parameters, in which the K 
treatments are considered as K domains. The objective of an 
embedded experiment, however, is to compare estimates of 
the same parameter under different survey strategies or 
treatments, whereas in the case of domain parameters the 
objective is to compare estimates of different population 
parameters under basically the same survey strategy.  

The approach presented in this paper can be summarized 
as follows. Based on the K subsamples, a design-based 
estimator for the population parameter observed under each 
of the K treatments, and a design-based estimator for the 
covariance matrix of the 1−K  contrasts between these 
estimates are derived. This estimation procedure accounts 
for the probability structure of the sampling design, the 
random assignment of sampling units to treatments due to 
the experimental design, and the weighting procedure 
applied in the ongoing survey for the estimation of target 
parameters. This gives rise to a design-based Wald statistic 
to test the stated hypotheses about differences between 
sample survey estimates. 

The main contribution of this paper is to provide a 
general framework for comparing K alternative survey 
approaches in the realistic situation of a full-scale sample 
survey process. The random selection of sampling units  
from a finite target population by means of a probability 

sample is used in combination with randomization of the 
sampling units over different treatments according to an 
experimental design. This facilitates comparison of alter-
native survey implementations on the main outcomes of a 
sample survey and the generalization of the observed results 
to populations larger than the sample included in the 
experiment. The analysis procedure proposed in this paper 
generalizes the analysis of two-treatment experiments 
embedded in sample surveys (Van den Brakel and Renssen 
(1998) and Van den Brakel and Van Berkel (2002)) to 
CRD’s and RBD’s with 2>K  treatments. An important 
result is that the design-based estimator for the covariance 
matrix of the contrasts between the subsample estimates has 
a relatively simple structure, as if the sampling units were 
drawn with replacement and unequal selection probabilities. 
As a result neither joint inclusion probabilities nor design-
covariances between the subsample estimates are required 
in the variance estimation procedure. This results in an 
attractive and relatively simple analysis procedure. A 
second advantage is that this procedure tests hypotheses on 
differences between the sample estimates of the survey, 
which facilitates the interpretation of the analysis results in 
many applications.  

A design-based theory for the analysis of embedded 
experiments is presented in section 2. In section 3 it is 
explained in more detail why the design-based linear 
regression analysis is less appropriate. In section 4, the 
proposed design-based analysis procedure is evaluated in a 
simulation study. Conclusions are summarized in section 5. 

 
2. Analysis of Embedded Experiments  

2.1 Measurement Error Models  
Although the analysis procedure for embedded experi-

ments proposed in this section is design-based, some use is 
made of measurement error models. Testing systematic 
effects of different survey methodologies on the outcomes 
of a survey implies the existence of measurement errors. 
The traditional notion that observations obtained from 
sampling units are true fixed values observed without error, 
generally assumed in design-based sampling theory, is not 
tenable in such situations. Therefore a measurement error 
model is specified for the observations obtained under the 
different survey  implementations or treatments of the 
experiment. This model links the treatment effects to 
systematic differences between finite population parameters.  

Consider a finite population U of N individuals. Let 
variable ikly  denote the potential response of the thi  indi-
vidual ),,2,1( Ni K=  observed by means of the thk  
treatment ),,2,1( Kk K=  and the thl  interviewer 

).,,2,1( Ll K=  It is assumed that these observations are a 
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realization of the measurement error model =ikly  
.ikilkiu ε+ψ+β+ Here iu is the true, intrinsic value of the 

thi  individual, kβ  the effect of the thk  treatment, ilψ  the 
effect of the thl  interviewer on the thi  individual and ikε  an 
error component of the thi  individual observed by means of 
the thk  treatment. The interviewer effect ilψ  allows for 
systematic clustering and correlation between the responses 
of the individuals assigned to the same interviewer due to 
fixed and random interviewer effects, i.e., ,llil ξ+ψ=ψ  
with lψ  the fixed and lξ  the random effect of the thl  
interviewer. Besides interviewers, common factors such as 
coders and supervisors might also induce correlation 
between the responses of the individuals. 

Since for each sampling unit a potential response variable 
is defined for each of the K different treatments, the 
measurement error model can be expressed in matrix 
notation as  

,iiliil u εjβjy +ψ++=  (1) 

where ,),,(,),,( 11
t

K
t

iKlliil yy ββ== KK βy  =iε  
t

iKi ),,( 1 εε K  and .)1,,1( tK=j  Let mE  and mCov  
denote the expectation and the covariance with respect to 
the measurement error model. The following model 
assumptions are made: 

,)(E 0ε =im  (2) 

,
:

:
),(Cov

⎩
⎨
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=′
ii
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,0),(Cov =ξε likm  (6) 

where 0 is a vector of order K with each element zero and O 
a matrix of order KK ×  with each element zero. If ,0=ψ l  
then a model with only random interviewer effects is 
obtained. If ,02 =τl  then a model with only fixed inter-
viewer effects is obtained. From the assumptions, it follows 
that  

,)(E βjjy +ψ+= liilm u  (7) 

and 
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Any correlation between the responses of different indi-
viduals can be modeled by means of random interviewer 
effects. Any fixed interviewer effects influence the expected 

response values. From now on, for notational convenience, 
the subscript l will be omited in ikly  and .ily   
2.2 Hypotheses Testing  

The measurement error model for the observations 
obtained in the experiment enables us to relate systematic 
differences between population parameters to the different 
survey implementations. Suppose that L interviewers are 
available for the data collection. The population U of size N 
can conceptually be divided into L groups lU  of size 

,,,1, LlNl K=  such that all individuals within a group are 
potentially interviewed by the same interviewer. Let 

t
KYYY ),,,( 21 K=Y  denote the K dimensional vector of 

population means of ,iy  i.e., 

∑∑∑∑
====

+ξ+ψ++=
N

i
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N 1111

.
11 εjjβjY (9) 

The objective of the experiment is to investigate whether 
there are systematic differences between the K population 
means of Y  due to the K different survey strategies or 
treatments. This can be accomplished by formulating hypo-
theses about 

,
1

)(E
11

βjjY +ψ+= ∑∑
==

l
l

L

l
i

N

i
m N

N
u

N
 (10) 

where the expectation is taken over the measurement error 
model. This gives rise to the following hypothesis:  

,0E:

,0E:

1

0

≠
=

YC

YC

m

m

H

H
 

(11)
 

where C denotes a KK ×− )1(  matrix with 1−K  contrasts 
and 0 a 1−K  vector of zeros. Since ,0Cj =  it follows that 

CβYC =mE  and hypothesis (11) concerns the treatment 
effects as represented by β  in the measurement error model 
(1). The contrasts between the population parameters neatly 
correspond to these treatment effects. For the randomized 
experiments considered in this paper, it holds that each 
experimental unit assigned to an interviewer l has a nonzero 
probability of being assigned to each of the K treatments. 
Therefore, the bias in the parameter estimates due to fixed 
interviewer effects is the same under each of the K 
treatments and cancels out in the 1−K  contrasts between 
the K parameter estimates.  

Hypothesis (11) will be tested by estimating YmE  
instead of ,β  taking into account the sampling design, the 
experimental design, and the weighting procedure of the 
ongoing survey applied for the estimation of population 
parameters. To test (11), a probability sample drawn from a 
finite population is available. The sampling units 
(experimental units) are randomized over K subsamples and 
are assigned to one of the K treatments. In section 2.3 a 
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design-unbiased estimator for ,E Ym  denoted Ŷ  is derived. 
For example Ŷ  may be the Horvitz-Thompson estimator or 
the generalized regression estimator. Let V denote the 
covariance matrix of .Ŷ  An (approximately) design-
unbiased estimator for the covariance matrix of the 1−K  
contrasts of ,Ŷ  denoted ,ˆ tCVC  will be derived in section 
2.4. Now, hypothesis (11) can be tested by means of the 
following design-based Wald statistic: 

.ˆ)ˆ(ˆ 1 YCCVCCY −= tttW  (12) 

For mathematical convenience, we prefer the contrast 
matrix ),( IjC −= M  where j is a 1−K  vector of ones and I 
the )1()1( −×− KK  identity matrix. 
 
2.3 Estimation of Treatment Effects  
2.3.1 Horvitz-Thompson Estimator  

Consider a sample s drawn by a generally complex 
sampling design, that can be described by the first and 
second order inclusion probabilities iπ  and ii ′π  of the thi  
and th, ii ′  sampling unit(s) respectively. In the case of a 
CRD, sample s is randomly divided into K subsamples ks  
of size .kn  If k

K
k nn ∑ =+ = 1  denotes the number of sampling 

units in s, then the conditional probability that the thi  
sampling unit is selected in subsample ,ks  given that 
sample s is selected, is equal to ./ +nnk  In the case of an 
RBD the sampling units are, conditionally on the  
realization of s, deterministically divided into J blocks .js  
Potential block variables are sampling structures like strata, 
clusters, PSU’s, interviewers and the like. Within each 
block, the sampling units are randomized over the K 
treatments. Let jkn  denote the number of sampling units in 
block j assigned to treatment k. Then jk

K
kj nn ∑ =+ = 1  

denotes the size of block jk
J
jk nnj ∑ =+ = 1,  denotes the size 

of subsample ks  and jk
J
j

K
k nn ∑∑ ==++ = 11  denotes the size 

of sample s. The conditional probability that the thi  
sampling unit is selected in subsample ,ks  given that 
sample s is selected and ,jsi ∈  is equal to ./ +jjk nn  

Each subsample ks  can be considered as a two-phase 
sample, where the first order inclusion probabilities of the 
first phase sample are obtained from the sampling design 
and the conditional first order inclusion probabilities of the 
second phase sample are obtained from the experimental 
design. From this point of view, the first order inclusion 
probabilities for the elements of ks  are equal to =π*

i  

ik nn π+ )/(  for CRD’s and ijjki nn π=π + )/(*  for RBD’s if 
this thi  sampling unit is assigned to the thj  block. It 
follows that the Horvitz-Thompson estimator for ,kY  based 
on the kn+  observations obtained from subsample ks  can 
be defined as: 
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where ikp  are K–vectors that describe the randomization 
mechanism of the experimental design. For a CRD, it 
follows that 
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and for an RBD  
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where kr  denotes the unit vector of order K with the thk  
element equal to one and the other elements equal to zero 
and 0 denotes a K vector of zeros. Properties of the vectors 

ikp  are given in the appendix.  
Now, since ks  can be considered as a two-phase sample 

it holds that ,),|ˆ(EE HT; kkes YmsY =  where sE  and eE  
denote the expectation with respect to the sample design and 
the experimental design, respectively. So, given m, the 
vector t

KYY )ˆ,,ˆ(ˆ
HT;HT1;HT K=Y  is proposed as a design-

unbiased estimator for .Y  But then, HTŶ  is unbiased for 
.Em Y   

2.3.2 The Generalized Regression Estimator  
In finite population sampling it is customary to increase 

the accuracy of the Horvitz-Thompson estimator, if suitable 
auxiliary information is available, by means of the gene-
ralized regression estimator, see e.g., Bethlehem and Keller 
(1987) and Särndal, Swensson and Wretman (1992). The 
generalized regression estimator enables us to incorporate 
the weighting scheme of the ongoing survey in the analysis 
of embedded experiments. This might decrease the design 
variance as well as the bias due to selective nonresponse and 
therefore it may increase the accuracy of the experiment. In 
the present context the generalized regression estimator 
therefore represents a design-based analogue of covariance 
analysis in standard experimental design methodology. 

Besides the values of the response variable ,iy  we also 
associate with each unit in the population an H–vector ,ix  
of auxiliary information. The finite population means of 
these auxiliary variables are assumed to be known and are 
denoted by .X  It is also assumed that the auxiliary variables 
are intrinsic values, that can be observed without measure-
ment errors, and so are not affected by the treatments. When 
the model assisted approach of Särndal et al. (1992) is 
followed, the intrinsic values iu  in the measurement error 
model of section 2.1 for each unit in the population are 
assumed to be an independent realization of the following 
linear regression model: 
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,ii
t

i eBu += x  (16) 

where B is an H–vectors containing the regression 
coefficients and the ie  are the residuals. In the model 
assisted approach of Särndal et al. (1992), the intrinsic 
values iu  are considered to be a realization of an underlying 
superpopulation model defined by (16). In this case the 
residuals ie  are independent random variables with a 
variance .2

iω  Then it is required that all 2
iω  are known up to 

a common scale factor; that is 22 ω=ω ii v  with iv  known. 
From a strictly design-based point of view, proposed by 
Bethlehem and Keller (1987), there is no need to adopt a 
superpopulation model. In that case the residuals are fixed 
intrinsic values of the elements in the finite population and 
no model assumptions about the residuals are needed. In this 
paper, the model assisted approach of Särndal is adopted. 
This implies that expectations with respect to the measure-
ment model, as in (7) and (10), are conditional on the 
realization of the intrinsic values ,,,1, Niui K=  in the 
finite population according to the superpopulation model 
(16). 

The regression coefficients of the linear model (16) in the 
finite population are defined as 
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The intrinsic values iu  are not observable due to 
measurement errors and treatment effects. Consequently, 
(17) cannot be computed, even in the case of a complete 
enumeration of the finite population. In the case of a 
complete enumeration under the thk  treatment 
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denotes the finite population regression coefficients of the 
linear model (16). Conditional on the realization of 

,,,1, Niui K=  the expectation of the finite population 
regression coefficients kb~  with respect to the measurement 
error model is given by 
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(19)

 

The finite population regression coefficients kb~  and kb  
can be estimated using the sample data from subsample ,ks  
with the Horvitz-Thompson estimator: 
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Now the generalized regression estimator for ,kY  based on 
the kn+  observations of subsample ,ks  is defined as  

,,,2,1),ˆ(ˆˆˆ
HTHT;greg; KkYY t

kkk K=−+= XXb  (20) 

where HTX̂  denotes the Horvitz-Thompson estimator for 
the population means of the auxiliary variables X  based on 
the kn+  sampling units of subsample .ks  

When expressing (20) as a function of ),ˆ,ˆ,ˆ( HTHT; XbkkY  
the generalized regression estimator can be approximated by 
means of a first order Taylor linearization about 

),,,E( Xbkkm Y  where kb  is defined in (19). This gives: 
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and where B is an KH ×  matrix of which the columns are 
the H–vectors .kb  Now t

KYY )ˆ,,ˆ(ˆ
greg;greg;1GREG K=Y  is 

proposed as an approximately design-unbiased estimator for 
.YmE   

2.4 Variance Estimation of Treatment Effects  
Let V denote the covariance matrix of .ˆ

GREGY  To 
estimate the covariance terms of V, vectors iy  containing 
the observations of all K treatments obtained from each 
sampling unit are required. Since in the experimental 
designs under consideration each sampling unit is assigned 
to one of the K treatments, only one of the components of 

,iy  for ,si ∈  is actually observed. Consequently, a design-
unbiased estimator for V cannot be derived. Van den Brakel 
and Binder (2000, 2004) tried to overcome this problem by 
imputing the unobserved components. The usefulness of 
their results, however, depends on the correctness of the 
imputation model. In the present paper, this problem is 
circumvented by deriving a design-based estimator for 

,tCVC  i.e., the covariance matrix of the contrasts of 
,ˆ

GREGY  which is sufficient for the Wald statistic (12). 
Expressions for the generalized regression estimator are 

derived first. Results for the Horvitz-Thompson estimator 
are given as a special case. The covariance matrix of the 
contrasts of GREGŶ  can be approximated by the covariance 
matrix of the contrasts of .)ˆ,,ˆ(ˆ

HT;HT1;HT
t

KEE K=E  Let 

sCov  and eCov  denote the covariances with respect to the 
sample design and the experimental design respectively. 
Now, consider the following variance decomposition: 
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Since kike rp =)(E  (see (42) in the appendix), it follows that 
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Under the condition that a constant H–vector a exists such 
that 1=i

txa  for all ,Ui ∈  it is proven  in the appendix that  

.)( ii
t

i εCxByC =−  (23) 

The stated condition implicitly assumes that the size of the 
finite population is known and is used as auxiliary informa-
tion. This condition holds for weighting models that contain 
an intercept or one or more categorical variables that parti-
tion the population into subpopulations. Using model 
assumptions (2) and (3), it follows from (22) and (23) that 
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For the third term in (21), it is proven in the appendix for 
an RBD that  
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where D is a KK ×  diagonal matrix with diagonal elements 
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If the results obtained in (24), (25) and (26) are inserted in 
(21), then it follows that 

.EE t
sm

t CDCCVC =  (28) 

Conditionally on the realization of m and s, an approxi-
mately design-unbiased estimator for D in (28) can be 
derived. Therefore, tCVC  can conveniently be stated 
implicitly as the expectation over the measurement error 
model and the sampling design. See Van den Brakel (2001) 
for explicit expressions for .tCVC  Given the realization of 

m and s, the allocation of the sampling units within each 
block to the subsamples jks  can be considered as simple 
random sampling without replacement from block .js  
Consequently, for an RBD it follows that an approximately 
design-unbiased estimator for D is given by a KK ×  
diagonal matrix D̂  with diagonal elements 
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An approximately design-unbiased estimator for tCVC  in 
(28) is given by .ˆ tCDC  Results for a CRD follow directly 
as a special case from (27) and (29) where ++ == nnJ j,1  
and kjk nn = . As an alternative, the residuals )ˆ( i

t
kiky xb−  

in (29) can be multiplied by the correction weights (also 
called g–weights, Särndal et al. 1992, result 6.6.1). Since, 

tCVC  in (28) is defined implicitly as the expectation over 
the sampling design, (29) is approximately design-unbiased 
under general complex sampling schemes. This variance 
estimator only requires that the fraction of sampling units 
assigned to the different treatments according to the 
experimental design is fixed in advance. The size of the 
sample as well as the blocks might be random with respect 
to the sample design, e.g., in the case of an RBD where 
clusters or PSU’s are the block variable. 

The variance estimator tCDC ˆ  has a structure as if the K 
subsamples had been drawn independently from each other, 
where the sampling units are selected with unequal proba-
bilities )/( +π ni  with replacement in the case of a CRD, or 

)/( +π ji n  with replacement within each block j in the case 
of an RBD (compare (29) with Cochran 1977, equation 
(9A.16)). It is remarkable that the second order inclusion 
probabilities of the sampling design have vanished. This is 
caused by:  

1. The assumption of additive treatment effects in the 
measurement error model, i.e., kβ  for all Ui ∈  
observed under treatment k.  

2. The assumption that measurement errors between 
individuals are independent.  

2. A properly chosen weighting scheme such that the 
condition 1=i

txa  for all Ui ∈  is satisfied.  
4. The fact that variances are calculated for the 

contrasts between the subsample means.  
The design variance of the first-order Taylor series approxi-
mation of the generalized regression estimator consists of 
the residuals ).( i

t
kiky xb−  From the proof of (23) it follows 

that under a weighting scheme that satisfies the condition 
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1=i
txa  for all ,Ui ∈  the treatment effects kβ  vanish from 

the residuals )( i
t
kiky xb−  in (23). In these residuals three 

terms remain:  
1. The residual of the linear regression model of the 

intrinsic value, i.e., .i
t

ii ue xb−=   
2. A term concerning the bias due to the interviewer 

effects. This term is equal to ,i
t

il xd−ψ  where d 
denotes the regression coefficients from the 
regression function of the interviewer effects on the 
auxiliary variables ,ix  (see proof of (23) in the 
appendix).  

3. The measurement errors .ikε   
The residuals of the intrinsic values ie  and the bias due to 
the interviewer effects do not depend on the different treat-
ments and therefore cancel out in the contrasts of the resi-
duals in (23). Only the measurement errors iε  remain in the 
contrasts of the residuals in (23). As a result, the two terms 

),|ˆ(EECov HT smesm EC  and ),|ˆ(ECovE HT smesm EC  
only contain the measurement errors .ikε  Due to the 
assumption of independence of the measurement errors 
between individuals, the cross products between individuals, 
which contain the second order inclusion probabilities in 
(24) and (25) vanish. The covariance structure of the third 
term of (21) is mainly determined by the randomization 
mechanism of the experimental design. For a CRD this 
comes down to the selection of K subsamples from s by 
means of simple random sampling without replacement. For 
an RBD this comes down to the selection of K subsamples 
from s by means of stratified simple random sampling 
without replacement where strata correspond to the blocks 
of the experiment. In the variance of the contrasts of the 
subsample means, the finite population corrections in the 
design variance of the subsample means cancel out against 
the design covariance between the subsample means. As a 
result, the leading term of (26), i.e., ,EE t

sm CDC  has a 
structure as if the K subsamples were drawn independently 
of each other by means of simple random sampling with 
replacement in the case of a CRD, or stratified simple 
random sampling with replacement in the case of an RBD. 
Second order inclusion probabilities appear if the 
expectation with respect to the sampling design in (28) is 
made explicit, see Van den Brakel (2001). 

The minimum use of auxiliary information is a weighting 
scheme where )1(=ix  and 22 ω=ωi  for all .Ui ∈  Under 
this weighting scheme it follows that 
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which can be recognized as the ratio estimator for a 
population mean, originally proposed by Hájek (1971). It 
also follows that )~(ˆ

kk y=b  and that an approximately 

design-unbiased estimator for the covariance matrix of the 
treatment effects is given by (29) with .~ˆ

ki
t
k y=xb   

If ,ˆ/1 *
1 NNi

n
i

k =≡π∑ +
=  then the ratio estimator (30) 

corresponds with the regular Horvitz-Thompson estimator. 
This condition is satisfied in the case of a CRD or an RBD 
embedded in a simple random sampling design, an RBD 
embedded in a stratified simple random sampling design 
where strata are used as block variables or a CRD 
embedded in a stratified simple random sampling design 
with proportional allocation. Under the condition ,ˆ NN =  
expressions for the design variance of the Horvitz-
Thompson estimator are given by (27) and (29), where 

i
t
kiky xb−  and i

t
kiky xb̂−  are replaced by .iky Variance 

expressions for the Horvitz-Thompson estimator are more 
complicated if ,ˆ NN ≠  see Van den Brakel (2001).  
2.5 The Wald Test  

Inserting the design-unbiased estimators for the 
subsample means and the covariance matrix of the contrasts 
between these subsample means into (12) leads to the 
design-based Wald statistic 

.ˆ)ˆ(ˆ
GREG

1
GREG YCCDCCY −= tttW  (31) 

It is proven in the appendix that this expression can be 
simplified to: 
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For general sampling schemes, the asymptotic distribu-

tion of this test statistic will be unknown. However, if the 
sampling design is simple random sampling without 
replacement and the experimental design is a CRD, then 
Lehmann (1975, appendix 8), based on the work of Hájek 
(1960), gives sufficient conditions under which HTÊ  is 
asymptotically multivariate normal distributed with mean 

EE =),|ˆ(EE HT smes  and covariance matrix sCov
~ =V  

),|ˆ(CovE),|ˆ(E HTHT smsm ess EE +  if ∞→+kn  and 
.

~
,()|ˆ(:)( HT )VEE NmnN →∞→− ++  Hence, →)|ˆ( HT mEC  

),
~

,( tN CVCEC  with .)/1( 1 i
N
iN εCEC ∑ ==  Since the iεC  

are mutually independent random variables with means 
equal to zero and covariance matrix t

i CC∑  we have by 
the ordinary central limit theorem →)( EC  

).)/1(,0( 1
2 t

i
N
iNN CC∑∑ = Combining both limit distri-

butions we obtain that unconditionally →HTÊC  
),0( tN CVC  and thus ).,(ˆ

GREG
tN CVCβCYC →  As a 

result it follows under the null hypothesis that W is 
asymptotically chi-squared distributed with 1−K  degrees 
of freedom (Searle 1971, theorem 2, chapter 2). For more 
complex sampling designs it is usually conjectured that 
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).,(ˆ
GREG

tN CVCβCYC →  Then W is still asymptotically 
chi-squared distributed with 1−K  degrees of freedom. The 
validity of this conjecture has been confirmed by simulation 
studies, see section 4 and Van den Brakel (2001).  
2.6 Pooled Variance Estimators  

In the case of an RBD the ++n  sampling units of s are 
divided into JK groups of size .jkn  For each of these JK 
subsamples separate population variances 2ˆ

jkES  have to be 
estimated. If the number of experimental units jkn  available 
for the estimation of these population variances becomes too 
small, then these estimates might become unstable. In such 
situations, more stable estimates can be obtained by pooling 
estimates of the population variances within the blocks. 

The residuals of the generalized regression estimator, 
),( i

t
kiky xb−  only depend on the thk  treatment effect 

through the measurement errors .ikε  Under the assumption 
that I2σ=i∑  in (3) for all ,Ui ∈  it follows that the 2

jkES  
within each block are identical parameters, i.e., 

,222
1 jjKj EEE SSS ===K  for .,,2,1 Jj K=  Under this 

assumption, it is efficient to use a pooled estimator for ;2
jES  
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or alternatively 
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There are several special cases where the design-based 
Wald statistic coincides with the statistics−F  known from 
more standard model-based analysis procedures. Consider 
an RBD embedded in a self-weighted sampling design 
where sampling units are allocated proportionally to the 
treatments over the blocks, i.e., Nni /++=π  and 

++++ = nnnn kjjk //  for all .,,1 Jj K=  Then, it follows 
from the results obtained for the ratio estimator (30) that 
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If ,1−≈ ++ jj nn  then it follows under the pooled variance 
estimator (33) that  
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Denote ./1 1 ik
n
ijkjk yny jk∑ ==  Under the pooled variance 

estimator (34) it follows that  
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Substituting these pooled variance estimators into the Wald 
statistic (32), leads to  

,)()(
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 (37)  

where 
aPd̂  is given by either (35) for 1=a  or (36) for 

.2=a  It can be recognized that )1/( −KW  in (37) with 
1

ˆ
Pd  

the pooled variance estimator (35), corresponds with the 
statistics−F  of an ANOVA for a two-way layout without 

interactions. If 
2

ˆ
Pd  (36) is inserted, then )1/( −KW  

corresponds with the statistics−F  of an ANOVA for a 
two-way layout with interactions (Scheffé 1959, chapter 4). 
A pooled variance estimator for a CRD follows as a special 
case from (35) and (36). Under both estimators it follows 
that )1/( −KW  corresponds with the statistics−F  of the 
one-way ANOVA (Scheffé 1959, chapter 3).   
2.7 Advantages of RBD’s  

The main advantage of RBD’s is the elimination of the 
variation between the blocks in the analysis of treatment 
effects. Sampling units from the same stratum, PSU or 
cluster generally have a higher degree of homogeneity 
compared with sampling units from different strata, PSU’s 
or clusters. This suggests using sampling structures like 
strata, PSU’s or clusters as block variables in an RBD 
(Fienberg and Tanur 1987, 1988). Using these sampling 
structures as a block variable in an RBD, ensures that each 
stratum, PSU or cluster is sufficiently represented within 
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each subsample. Also interviewers are potential block 
variables, since this eliminates the variation in the observa-
tions due to fixed or random interviewer effects specified in 
measurement error model (1). For surveys where inter-
viewers collect data by means of CAPI in seperated 
geographical areas, blocking on interviewers also eliminates 
this regional variation from the target variable. The power of 
an experiment is maximized if sampling units are allocated 
proportionally to treatments over the blocks, i.e., 

++++ = nnnn kjjk //  for all Jj ,,1 K=  (see Van den Brakel 
2001, chapter 6). This allocation is better preserved if 
interviewers are used as the block variables, since response 
rates between interviewers differ substantially. Unrestricted 
randomization by means of a CRD is not always feasible 
from a practical point of view. For example in CAPI 
surveys where interviewers collect data in geographical 
areas surrounding their places of residence, restricted 
randomization of sampling units within interviewers or 
geographical regions which are unions of adjacent inter-
viewer regions might be required to avoid an unacceptable 
increase in the travel distance of the interviewers. This 
naturally leads to RBD’s with interviewers or regions as 
block variables.  

 
3. Design-Based Linear Regression Analysis  

A design-based linear regression might be considered as 
an alternative for the analysis of embedded experiments. 
The observations are assumed to be the outcome of a linear 
regression model ,i i

t
i eBy += x  with ix  the vector 

containing Q explanatory variables, B the vector containing 
the regression coefficients, and ie  a residual. This model is 
mainly determined by the experimental design and contains 
the treatment factors, local control factors (e.g., blocks) and 
covariates as explanatory variables (see e.g., Montgomery 
2001). Potential covariates are the auxiliary variables in the 
weighting scheme of the generalized regression estimator. 
The parameters of interest are the regression coefficients in 
the finite population, which are defined by =β  

,)( 1 yXXX tt − where X is the QN × design matrix of the 
experimental design, and y a N vector containing the 
observations obtained under the different treatments, as if 
the entire finite population is included in the experiment. 
The design matrix conceptually divides the population into 
K subpopulations or domains, which are observed under 
each of the K treatments of the experiment. The size of each 
subpopulation is determined by the fraction of sampling 
units assigned to each treatment in the experiment. A 
design-based estimator for the regression coefficients is 
given by ,)(ˆ 111

n
t
nn

t
n yΠXΧΠΧβ −−−=  (Särndal et al. 1992, 

section 5.10). Here nX  is the Qn ×  design matrix, ny  a 
vector containing n observations obtained under the 

different treatments of the n units included in the sample, 
and Π  a nn ×  diagonal matrix containing the first order 
inclusion probabilities iπ  of the sampling design. The 
approximate covariance matrix of β̂ , is given by (Särndal 
et al. 1992, section 5.10) 

,)()()ˆ(Var 11- −= XXΛXXβ tt  (38) 

with ).(Var 11 βXΠXyΠXΛ n
t
nn

t
ns

−− −=  The elements of 
Λ  are given by 
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with .i
t

ii ye xβ−=  Hypotheses about the subset of 
regression coefficients that reflect the treatment effects 
are tested with a Wald test, see e.g., Skinner (1989). 

The major drawback of this approach is that the 
estimation procedure doesn’t account for the random 
assignment of sampling units to treatments according to the 
experimental design. In doing so the subsample estimates 
are erroneously treated as if they were domain estimates, 
which results in wrong design-variances. The covariance 
matrix of the treatment effects (28), derived in section 2.4, 
illustrates that the superimposition of the experimental 
design on the sampling design determines which specific 
features of the sampling design are nullified or preserved. 
For example, the effect of stratified sampling or two-stage 
sampling on the variance of the treatment effects is nullified 
under a CRD. This effect, however, is ignored by the linear 
regression approach, since )ˆ(Var β  only accounts for the 
variance of the sample design. Disregarding the experi-
mental design in the variance estimation procedure becomes 
even more obvious under a complete enumeration of the 
finite population. Due to the experimental design, the entire 
finite population is randomly divided into K subsamples and 
the parameters under the different treatments are still 
estimated with a nonzero design variance. In this situation it 
follows for the linear regression approach that ββ =ˆ  and 
that )ˆ(Var β  is equal to zero because the design-variance 
induced by the experimental design is ignored. This 
contrasts with (28) that under a complete enumeration still 
reflects the design-variance due to the experimental design. 

It is not immediately evident how the linear regression 
approach can be adjusted to allow for the randomization due 
to the sampling design as well as the experimental design. 
Conditionally on the realization of the sample, the 
experimental design can be described by first and second 
order inclusion probabilities. Let k

si|π  denote the first order 
inclusion probability that the thi  sampling unit is assigned 
to the thk  treatment and let kk

sii
′

′π |  denote the second order 
inclusion probability that thi  sampling unit is assigned to 
the thk  treatment and the thi′  sampling unit is assigned to 
the thk′  treatment. A design-based estimator for β  that 
accounts for the sampling design and the experimental 
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design is given by ,)(ˆ 111
n

t
nn

t
n yΠXXΠXβ −∗−−∗=  where 

,∗Π  denotes the nn ×  diagonal matrix with first order 
inclusion probabilites .|

k
siii ππ=π∗  An approximation for 

the covariance matrix of β̂  is given by (38), where Λ  is 
obtained by conditioning on the realization of the sample, 
i.e., 
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This leads to the following expression for the elements of 
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which has the variance structure of a two-phase sample, 
where the first phase corresponds to the sampling design 
and the second phase to the experimental design. The 
sampling units are, according to the experimental design, 
assigned to only one of the K treatments. As a result it 
follows that 0| =π ′

′
kk

sii  for ,kk ′≠  and ,ii ′=  which hampers 
the derivation of an approximately design-unbiased 
estimator for the covariance terms of ),ˆVar(β  see also 
Van den Brakel and Binder (2000, 2004). In the analysis 
procedure proposed in section 2, this problem is 
circumvented by deriving a design-based estimator for the 
covariance matrix of the contrasts of GREGŶC  instead of an 
estimator for the covariance matrix of GREGŶ  itself. 

 
4. Simulation Study  

In subsection 4.1, a simulation study is conducted to 
evaluate the performance of the design-based estimator for 
the covariance matrix of the contrasts between the 
subsample estimates tCDC ˆ  with diagonal elements (29) as 
well as the design-based Wald statistic W defined by (32) to 
test hypotheses about these contrasts. Subsequently, this 
design-based Wald test, the design-based linear regression 
approach and a standard ANOVA are applied to the analysis 
of a CRD and an RBD in subsection 4.2.  
4.1 Evaluation of the Unbiasedness of tCDC ˆ  and the 
 Distribution of W  

In this simulation study, a measurement error model 
without interviewer effects is assumed, i.e.,  

.ikkiik uy ε+β+=  (39) 

An artificial population consisting of 3 strata, 450 PSU’s 
and 109,500 SSU’s is generated by randomly drawing 
strictly positive values for the intrinsic values iu  of a target 
parameter. The sizes of the PSU’s in the population are 

unequal. The intrinsic values are generated in two steps. 
First, a positive value for each PSU in the population is 
drawn from a uniform distribution. Subsequently a positive 
value for each SSU, also drawn from a uniform distribution, 
is added to the value obtained for the PSU in the first step. 
Within each stratum different lower and upper boundaries 
and interval-widths for these uniform distributions are 
applied, such that the population can be stratified into three 
relatively homogeneous subpopulations. The intervals of the 
uniform distributions that are applied in the second step are 
smaller than the intervals of the uniform distributions in the 
first step. This resulted in a population where the intrinsic 
values for the SSU’s within each PSU are clustered. The 
structure of the population is summarized in Table 1.  

Table 1 
Population 

 

   Intrinsic value of target parameter 
Stratum Number of 

PSU’s 
Number of 

SSU’s 
Mean Std. 

dev. 
Min. 
value

Max. 
value

1 70 6,250 22,183 12,001 7,607 50,915
2 130 18,250 6,128 1,866 3,007 10,490
3 250 85,000 1,407 732 512 3,248
Total 450 109,500 3,380 5,803 512 50,915

 
Samples are drawn repeatedly from this population by 

means of stratified two-stage sampling without replacement 
with unequal inclusion probabilities. The inclusion proba-
bilities are chosen proportionally to the size of the target 
parameter. The sample sizes for the different strata are 
summarized in Table 2. For each sample, a new measure-
ment error is generated for each population element. These 
measurement errors are drawn from a normal distribution 
with a mean equal to zero and a standard deviation pro-
portional to the size of the intrinsic values. The range of the 
standard deviations varied from 1,000 for the SSU’s with 
the largest intrinsic values in the first stratum to 10 for the 
SSU’s with the smallest intrinsic values in the third stratum.  

Table 2 
Sample Design  

Stratum Number of PSU’s Number of SSU’s 
1 25 900 
2 30 1,080 
3 50 1,800 
Total 105 3,780  

Finally, the samples are randomly divided into four 
subsamples according to an experimental design, each with 
a size of 945 SSU’s. Two different experimental designs are 
applied. In the first design, the SSU’s are randomized over 
the four different treatments according to a CRD. In the 
second design, the SSU’s are randomized over the four 
different treatments according to an RBD, where the three 
strata are used as the block variable. Within each block or 
stratum, 1/4 of the SSU’s are randomly assigned to each 
treatment. Under both experimental designs, four different 
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sets of treatment effects are applied, one under the null 
hypothesis and three under different alternative  hypotheses. 
This resulted in eight different simulations, which are 
specified in Table 3. Each simulation is based on 

000,100=R  resamples. Observations for the target para-
meter are obtained by adding a measurement error and a 
treatment effect to the intrinsic values according to (39).   

Table 3 
Summary of Simulation Settings  

Treatment effects 
Experimental design 1β  2β  3β  4β  
CRD RBD 0 0 0 0 
CRD RBD 0 20 40 60 
CRD RBD 0 40 80 120 
CRD RBD 0 80 160 240  

The data obtained in each resample are analyzed with the 
extended Horvitz-Thompson estimator (30). Let r

ky~  denote 
the subsample estimate obtained under the thk  treatment in 
the thr  resample. The vector with the four subsample 
estimates obtained in the thr  resample is denoted by =rY~  

.)~,~,~,~( 4321
trrrr yyyy  The vector with the three contrasts in the 

thr  resample is equal to jIjCYC ),(with,
~ −= Mr  a vector 

of order 3 with each element equal to one, and I  the 33×  
identity matrix. Furthermore, r

kd̂  denotes the diagonal 
elements of the estimated covariance matrix, obtained under 
the thr  resample. An expression for r

kd̂  is given by (29) 
with r

ki
t
k y~ˆ =xb . The estimated covariance matrix of the 

treatment effects is equal to ,ˆ trCDC  with =rD̂  
).ˆ,ˆ,ˆ,ˆ( 4321

rrrr dddddiag  Finally 1)ˆ()
~

( −= trtrrW CDCYC  
)

~
( rYC denotes the Wald statistic observed in the thr  
resample. Based on the 000,100=R  resamples within each 
simulation, the population parameters under the different 
treatments can be approximated by  

∑
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with .),,,( 4321
tYYYY=Y  From (10) it follows that the real 

treatment effects in the measurement error model can be 
approximated by .CβYC ≈  Furthermore, the mean of the 
estimated resample covariance matrices can be calculated as 
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and the mean of the resample Wald statistics as 
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An approximation of the real covariance matrix of the 
treatment effects is given by 
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1
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r
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−
= ∑

=
 (41) 

The performance of the variance estimation procedure is 
evaluated by comparing tCDC  to .tCVC  If the derived 
variance estimator tCDC ˆ  is approximately design-
unbiased, then the mean of resample covariance matrices 

tCDC  must tend to the real covariance matrix ,tCVC  for 
.∞→R  An impression of the precision of the derived 

variance estimator is obtained by calculating the standard 
deviation of the elements of ,tCDC  and is denoted by 

).( tCDCσ  The diagonal elements of D are denoted .kd  
If  ),,(ˆ

GREG
tN CVCβCYC →  then it follows that 

[ ][ ],
2

1 δ−χ→ KW  with 1−K  the number of degrees of 
freedom and )()()(2/1 1 CβCVCCβ −=δ tt  the non-
centrality parameter of the chi-squared distribution. In the 
simulation study, the non-centrality parameter under the 
alternative hypotheses can be calculated by inserting (41) in 
the expression of .δ  Subsequently, the power of the Wald 
statistic for a particular set of treatment effects can be 
calculated by [ ][ ] [ ][ ])()( 2

11
2

1 −α−δ− χ>χ= KKPWP  where 

[ ][ ]
2

11 −α−χ K  denotes the th)1( α−  percentile point of the 
central chi-squared distribution with 1−K  degrees of 
freedom. The performance of the Wald statistic is evaluated 
by comparing )(WP  with the simulated power, which is 
defined as the fraction of significant runs observed in the R 
resamples, i.e., 

[ ][ ]∑
=

−α−χ>=
R

r
K

rWI
R

WP
1

2
11

sim ),(
1

)(  

where )(BI  denotes the indicator variable which is equal to 
one if B  is true, and equal to zero otherwise. The results of 
the simulations are summarized in Tables 4.1 through 4.8.  
The means of the subsample estimates kY  under the null 
hypotheses in Tables 4.1 and 4.5 slightly overestimate the 
population mean in Table 1. This difference can be 
attributed to the bias of the extended Horvitz-Thompson 
estimator. The means of the contrasts between the 
subsample estimates ,YC  however, almost perfectly agree 
with the real treatment effects .Cβ  The means of the 
resample covariance matrices tCDC  tend to the values of 
the real covariance matrices ,tCVC  which illustrates that 
the variance estimation procedure, derived in section 2.4, is 
approximately design-unbiased. The relative precision of the 
diagonal elements of tCDC  is about 10.5% under this 
particular sample size. The simulated power based on the 
resample distribution of the Wald statistic approximates the 
real power reasonably well. On the average the simulated 
power is slightly higher. The expected value of the chi-
squared distribution is equal to [ ][ ] δ+−=χ δ− 2)1()( 2

1 KE K  
(Searle 1971, section 2.4.h). If the resample distribution of 
the Wald statistic tends to a [ ][ ],

2
1 δ−χ K  then the mean of the 

resample Wald statistics W  (40) must tend to the expected 
value of the chi-squared distribution. Indeed, it follows from 
Tables 8.41.4 −  that δ+−≈ 2)1(KW . Moreover, the 
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hypothesis that the resample distribution of the Wald 
statistic under the null hypothesis is equal to the central chi-
squared distribution, is tested with the one-sample 
Kolmogorov-Smirnov test. This hypothesis is not rejected at 
a significance level of 5% for either the CRD or the RBD, 
and confirms the conjecture that the Wald statistic is 
asymptotically chi-squared distributed under stratified two-

stage sampling without replacement, unequal inclusion 
probabilities, and relatively large sampling fractions. If the 
simulations under a CRD are compared to an RBD, then it 
follows that blocking on strata results in a substantial 
increase of the precision of the estimated contrasts and the 
power of the tests in this particular situation.  

 
Table 4.1 

Simulation Results CRD, t)0,0,0,0(=β   
Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,392 14,311  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.05000 0.05072 
2 0 3,392 14,305  1 – 2 0 28,725 28,616 3,019  0.025 0.02500 0.02506 
3 0 3,392 14,306  1 – 3 0 28,892 28,616 3,019  0.010 0.01000 0.01017 
4 0 3,390 14,292  1 – 4 2 28,787 28,603 3,019  01591.3:W  0000.0:δ   

Table 4.2 
Simulation Results CRD, t)60,40,20,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,392 14,307  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.05842 0.05925 
2 20 3,412 14,307  1 – 2 – 20 28,635 28,614 3,026  0.025 0.03008 0.03040 
3 40 3,432 14,314  1 – 3 – 40 28,918 28,620 3,033  0.010 0.01257 0.01255 
4 60 3,450 14,291  1 – 4 – 58 28,624 28,597 3,025  14037.3:W  0697.0:δ   

Table 4.3 
Simulation Results CRD, t)120,80,40,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,392 14,314  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.08503 0.08523 
2 40 3,432 14,307  1 – 2 – 40 28,597 28,621 3,020  0.025 0.04704 0.04760 
3 80 3,472 14,307  1 – 3 – 80 28,947 28,622 3,022  0.010 0.02150 0.02165 
4 120 3,511 14,295  1 – 4 – 119 28,713 28,609 3,021  55406.3:W  2783.0:δ   

Table 4.4 
Simulation Results CRD, t)240,160,80,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,392 14,306  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.21198 0.2116 
2 80 3,472 14,310  1 – 2 – 80 28,748 28,616 3,026  0.025 0.13809 0.13885 
3 160 3,552 14,312  1 – 3 – 160 28,784 28,618 3,030  0.010 0.07703 0.07781 
4 240 3,631 14,291  1 – 4 – 239 28,538 28,598 3,022  22065.5:W  1203.1:δ   

Table 4.5 
Simulation Results RBD, t)0,0,0,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,389 3,088  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.05000 0.05168 
2 0 3,389 3,088  1 – 2 0 6,175 6,176 647  0.025 0.02500 0.02640 
3 0 3,389 3,088  1 – 3 0 6,216 6,176 647  0.010 0.01000 0.01060 
4 0 3,389 3,088  1 – 4 0 6,217 6,176 647  01483.3:W  0000.0:δ      
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4.2 Comparison of Three Analyis Procedures  
Furthermore, three possible analysis procedures for 

embedded experiments are compared, i.e., the design-based 
Wald test proposed in section 2, a standard ANOVA where 
all observations are equally weighted and assumed to be 
i.i.d., and the design-based linear regression approach 
described in section 3. To this end two samples, each with a 
size of 3,780 SSU’s are drawn from the finite population 
specified in Table 1, by means of the stratified two-stage 
sample design, which was also used in the previous 
simulation (see Table 2). For one sample, the SSU’s are 
randomly divided into four subsamples, each with a size of 
945, by means of a CRD. For the other sample the SSU’s 
are randomly divided into four subsamples, each with a size 
of 945, by means of an RBD where the strata are used as the 
block variables. Both experiments are conducted under the 
alternative hypothesis where the treatment effects in the 
finite population are equal to .)240,160,80,0( t=β  The 
design-based linear regression analysis is performed with 

Stata’s SVYREG  procedure that accounts for the stratifi-
cation, two-stage sampling and the unequal selection 
probabilities of the sampling design (StataCorp. 2001). The 
ANOVA is performed with Stata’s ΑΝΟVΑ  procedure 
(StataCorp. 2001). The analysis results under a CRD are 
summarized for the design-based Wald test in Table 5.1, for 
the design-based linear regression approach in Table 5.2, 
and for the ANOVA in Table 5.3. Similarly, the analysis 
results under an RBD are summarized in Tables 6.1, 6.2, 
and 6.3. 

As emphasized in section 3, the linear regression 
approach ignores the design variance due to the random-
ization of the sampling units over the subsamples with 
respect to the experimental design. As a result the standard 
errors of the treatment effects are smaller under the linear 
regression approach than in the case of the design-based 
Wald test, and the design-based regression approach results 
in smaller p-values for the test of treatment effects. 

 
Table 4.6 

Simulation Results RBD, t)60,40,20,0(=β   
Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,390 3,090  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.09099 0.09371 
2 20 3,410 3,089  1 – 2 – 20 6,225 6,180 648  0.025 0.05096 0.05238 
3 40 3,430 3,090  1 – 3 – 40 6,177 6,181 648  0.010 0.02365 0.02405 
4 60 3,450 3,090  1 – 4 – 60 6,184 6,180 649  66771.3:W  3226.0:δ   

Table 4.7 
Simulation Results RBD, t)120,80,40,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,389 3,088  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.23999 0.24310 
2 40 3,429 3,088  1 – 2 – 40 6,178 6,176 647  0.025 0.15999 0.16302 
3 80 3,469 3,088  1 – 3 – 80 6,183 6,176 649  0.010 0.09181 0.09458 
4 120 3,509 3,088  1 – 4 – 120 6,189 6,176 649  62182.5:W  2905.1:δ   

Table 4.8 
Simulation Results RBD, t)240,160,80,0(=β   

Subsamples  Contrasts  Wald statistic 

k kβ  kY  kd     Diagonal elements of  α  )(WP  )(sim WP  
1 0 3,390 3,091  kk ′−  YC  tCVC  tCDC  )( tCDCσ   0.050 0.77340 0.77712 
2 80 3,470 3,090  1 – 2 – 80 6,204 6,180 648  0.025 0.68135 0.68789 
3 160 3,550 3,090  1 – 3 – 160 6,210 6,181 648  0.010 0.55796 0.56701 
4 240 3,630 3,090  1 – 4 – 240 6,214 6,181 648  48594.13:W  1331.5:δ  

 
Table 5.1 

Design-based Wald Statistic, CRD  
Subsamples  Contrasts  Wald statistic 

k kβ  ky~   kk ′−  kk yy ′− ~~  kk dd ′+ ˆˆ   W df p –value 
1 0 3,414  1 – 2 – 124 164.915  2.4740 3 0.480 
2 80 3,538  1 – 3 – 182 162.542     
3 160 3,596  1 – 4 – 249 164.782     
4 240 3,663          
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Table 5.2 

Design-based Regression, CRD  
Source Coefficient Std. err. Wald statistic df p –value 
treatment   2.907 3 0.4062 
 treatment 1 – 182.14 177.60    
 treatment 2 – 58.36 175.56    
 treatment 4 66.79 170.46    
constant 3,596.47 194.75     

Table 5.3 
Standard ANOVA, CRD  

k kβ  ky   Contrast  ANOVA 
1 0 8021  kk ′−  kk yy ′−   Source df MS F p –value 

2 80 8094  1 – 2 – 73  Between treatments 3 14,432,816 0.14 0.9376 

3 160 7955  1 – 3 66  Residual 3,776 104,924,668   

4 240 8242  1 – 4 – 221  Total 3,779    
 

Table 6.1 
Design-based Wald Statistic, RBD  

Subsamples Contrasts Wald statistic 

k kβ  ky~  kk ′−  kk yy ′− ~~  kk dd ′+ ˆˆ  W df p –value 
1 0 3,395 1 – 2 – 25 81.247 9.93011 3 0.0192 
2 80 3,420 1 – 3 – 120 80.697    
3 160 3,515 1 – 4 – 231 82.383    
4 240 3,626        

Table 6.2 
Design-based Regression, RBD  

Source Coefficient Std.err. Wald statistic df p –value 
Block      
 Block 2 –17,068.28 2,556.46    
 Block 3 –21,999.39 2,540.98    
Treatment   18.4212 3 0.00036 
 Treatment 1 –211.51 74.84    
 Treatment 2 –246.78 60.05    
 Treatment 3 –97.91 73.39    
Constant 23,589.64 2543.25     

Table 6.3 
Standard ANOVA, RBD  

k kβ  ky+   Contrast  ANOVA 

1 0 8,815  kk ′−   kk yy ′++ −   Source df MS F p –value 

2 80 8,150  1 – 2 665  Between blocks 2 1.6773 E+11    
3 160 8,566  1 – 3 249  Between treatments 3 84,377,227 1.99 0.1126 
4 240 8,746  1 – 4 69  Residual 3,774 42,310,035   
        Total 3,779 131,089,505   

 
The standard ANOVA is a naive approach, since it 

ignores the stratification, clustering and selection of 
sampling units using inclusion probabilities that are chosen 
proportional to the value of the target parameter. The net 
result of ignoring these aspects of the sampling design in the 
analysis is a severe over-estimation of the subsample 
estimates as well as the standard errors. Compared to the 
other two  design-based  procedures, this results  in  larger 
p-values for the test of treatment effects.  

Another important advantage of the design-based Wald 
test compared to the design-based linear regression ap-
proach is that the Wald test always concerns the differences 
between the subsample estimates, which facilitate the 
interpretation of the results. This property is particularly 
important for embedded experiments aimed at the quanti-
fication of trend disruptions in the parameters of a survey 
due to adjustments in the survey design. In the case of a 
CRD, the linear regression model consists of one intercept 
parameter and three coefficients for the treatment effects. In 
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this particularly simple situation, the coefficients for the 
treatment effects are exactly equal to the differences 
between the subsample estimates. This property, however, 
doesn’t hold for the treatment effects obtained under more 
complicated models, as for example in the case of the RBD.  

 
5. Discussion and Conclusions  

In this paper we discuss how the statistical methodology 
of randomized experiments and random survey sampling 
can support the design and analysis of experiments 
embedded in ongoing sample surveys. The sample survey 
design forms a prior framework for the application of 
principles, known from the theory of experimental designs, 
like randomization and local control by means of blocking 
on strata, PSU’s, clusters or interviewers. To test hypotheses 
about the estimates of finite population parameters  
observed under different treatments of the experiment, a 
design-based Wald statistic for the analysis of CRD’s and 
RBD’s embedded in general complex sampling designs is 
derived using the Horvitz-Thompson estimator and the 
generalized regression estimator. The application of 
randomized sampling from a finite population in combina-
tion with this design-based analysis procedure enables us to 
generalize the results of the experiment observed in the 
specific sample to the entire survey population.  

Since we allow for general complex sampling designs, a 
rather complicated expression for the covariance matrix of 
the treatment effects with nonzero off-diagonal entries is 
expected. The derived estimator for this covariance matrix, 
however, has a structure as if the sampling units were drawn 
with replacement and with unequal selection probabilities. 
No second order inclusion probabilities or design-cova-
riances between the treatment effects are required, which 
simplifies the analysis considerably. For example, in the 
case of simple random sampling without replacement this 
result entails that the finite population correction factor 
should be disregarded in estimating the variance of 
contrasts. As a result a Wald statistic, derived from a design-
based perspective under general complex sampling designs, 
is obtained that still has the appealing relatively simple 
structure of standard model-based analysis procedures. 

For CRD’s and RBD’s embedded in a self-weighted 
sampling design analyzed with the extended Horvitz-
Thompson estimator and a pooled variance estimator, the 
Wald statistic coincides with the statistic−F  of an 
ANOVA for the one-way and two-way layouts. For the 
analysis of the embedded two-treatment experiment, a 
design-based version of the statistic−t  can be derived as a 
special case of the Wald statistic. Expressions and more 
details about this design-based statistic−t  and its 
relationship  with  Welch’s statistic−t  and the standard 

statistic−t can be found in Van den Brakel and Renssen 
(1998), Van den Brakel (2001) or Van den Brakel and Van 
Berkel (2002).  

The analysis procedure proposed in this paper is 
implemented in a software package, called X–tool. This tool 
will become available as a component of the Blaise survey 
processing software package, developed by Statistics 
Netherlands. 

 
Appendix  

Properties of the randomization vectors ikp   
For CRD’s and RBD’s the randomization vectors ikp  are 

defined by (14) and (15). As a consequence of the random-
ization mechanism of the experimental design, the vectors 

ikp  are random with the following conditional probability 
mass functions. For a CRD we have 
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For an RBD we have  
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Properties of these vectors are derived for an RBD. 
Properties for a CRD follow as a special, since a CRD can 
be considered as an RBD with one block. Let w. pr. denote 
“with probability”. 
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The expectation of ikp  with respect to the experimental 
design is given by: 
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The following covariances with respect to the experimental 
design can be derived: 
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Proof of formula (23)  

Under the stated condition that a constant H–vector a 
exists such that 1=i

txa  for all ,Ui ∈  and conditional on 
the realization of ,,,1, Niui K=  according to super-
population model (16), it follows that kb~  in (18) can be 
evaluated as 
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where b denotes the regression coefficients defined by (17) 
and d denotes the regression coefficients from the 
regression function of the interviewer effects on the 
auxiliary variables .ix  From result (47) it follows that 
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Proof of formula (26) for an RBD  
First an expression for ),|ˆ(Cov HT sme EC  is derived. Let 
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Using (43) and (46), the diagonal elements of 
),|ˆ(Cov HT sme E  can be elaborated as  
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Using (44) and (45), the off-diagonal elements of 
),|ˆ(Cov HT sme E  can be elaborated as  
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The results (49) and (50) can be written in matrix notation; 
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where D denotes a KK ×  diagonal matrix with elements 
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According to (23) it follows that 
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The final part of the proof is to take the expectation of 
),|ˆ(Cov HT sme EC  with respect to the sampling design and 

the measurement error model. The proof is given for RBD’s 
where PSU’s are block variables. In a two-stage sampling 
scheme, J blocks or PSU’s are drawn from a finite popu-
lation of uJ  blocks with first order inclusion probabilities 
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Let 
IsE  denote the expectation with respect to the first 

stage of the sampling design and 
IIsE  the expectation 

with respect to the second stage of the sampling design. 
Taking the expectation with respect to the measurement 
error model and the sampling design of the first part of 
(52) and using model assumption (3) leads to 
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Note that t
jjjjsII
)ˆ)(ˆ(E Δ−ΔΔ−Δ  in (52) equals the design 

variance of jΔ̂  with respect to the second stage of the 
sampling design in block j. Taking the expectation with 
respect to the measurement error model and the sampling 
design of the second part of (52) and using model 
assumption (3) leads to 
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With results (52), (53) and (54) we can elaborate the second 
term on the right hand side of the equal sign of (51) as 
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Finally, it follows from (51) and (55) that 
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The derivation for an RBD where strata are block 
variables follows directly as a special case from an RBD 
where PSU’s are block variables with ,,1 | i

II
ji

I
j π=π=π  

ii
II

jii ′′ π=π |  and .uJJ = The proof for an RBD where 
clusters are block variables follows directly as a special case 
from an RBD where PSU’s are block variables with 1| =πII

ji  
and .1| =π ′

II
jii  

The expectation of ),|ˆ(Cov HT sme EC  with respect to 
the sampling design and the measurement error model for 
an RBD where interviewers are the block variables does not 
follow as a special case from an RBD where PSU’s are 
block variables. Since the block variables are not directly 
linked with the sampling design, the blocks should be 
considered as domains where the block size +jn  is random 
with respect to the sampling design. The derivation follows 
the same steps as in the proof for blocking on PSU’s and is 
given by Van den Brakel (2001). 

 
Proof of formula (32)  
Matrix D̂  can be partitioned as follows: 
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According to Bartlett’s identity (Morisson 1990, chapter 2) 
it follows that: 
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Inserting (56) into (31) leads to (32), QED. 
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Domain Estimators for the Item Count Technique 

Takahiro Tsuchiya 1 

Abstract 

The item count technique, which is an indirect questioning technique, was devised to estimate the proportion of people for 
whom a sensitive key item holds true. This is achieved by having respondents report the number of descriptive phrases, 
from a list of several phrases, that they believe apply to themselves. The list for half the sample includes the key item, and 
the list for the other half does not include the key item. The difference in mean number of selected phrases is an estimator of 
the proportion. In this article, we propose two new methods, referred to as the cross-based method and the double cross-
based method, by which proportions in subgroups or domains are estimated based on the data obtained via the item count 
technique. In order to assess the precision of the proposed methods, we conducted simulation experiments using data 
obtained from a survey of the Japanese national character. The results illustrate that the double cross-based method is much 
more accurate than the traditional stratified method, and is less likely to produce illogical estimates. 

                                                           
1. Takahiro Tsuchiya, The Institute of Statistical Mathematics, 4-6-7, Minami-Azabu, Minato-ku, Tokyo, 106-8569, Japan. E-mail: taka@ism.ac.jp. 

 
Key Words: Indirect questioning techniques; Item count technique; Domain estimators; Survey of Japanese national 

character. 
 
 

 

1. Introduction  
1.1 Indirect Questioning Techniques  

Suppose that a population U is divided into two sub-
populations )(TU  and ,)(

c
TU  where )(TU  is a set of elements 

having an attribute T, and c
TU )(  is a complement of .)(TU  

One purpose of social surveys is to estimate 
),1( ===π YPY  where 

⎩
⎨
⎧ ∈

=
otherwise0

if1 )(T
k

Uk
Y  

and )(⋅P  denotes the proportion of units having a particular 
value of the variable. For example, when T is “supporting 
the present cabinet,” π indicates the cabinet support rate, and 
when T is “using a certain illegal drug,” π denotes the 
prevalence rate of drug use. 

In a direct questioning technique, researchers ask 
respondents “Do you belong to ?)(TU ,” and directly obtain 
the indicator value iy  as “yes” or “no” (Cochran 1977, page 
50). When every respondent has an equal inclusion proba-
bility, a sample mean y  serves as one estimator of π. 

On the other hand, some indirect questioning techniques, 
including the randomized response technique (Warner 
1965), the nominative technique (Miller 1985), the item 
count technique (Droitcour, Caspar, Hubbard, Parsley, 
Visscher and Ezzati 1991), and the three-card technique 
(Droitcour, Larson and Scheuren 2001), are devised because 
some respondents tend to evade sensitive questions, such as 
those concerning highly private matters, socially unaccepted 
or deviant behaviors or illegal acts. The essential feature of 

indirect techniques is that instead of a direct observation of 
Y, another variable ),,( VYgX =  which is some sort of 
function of Y and, if necessary, of other random variables V, 
is observed so that respondents feel that their true Y – values 
are not revealed. While this feature is expected to derive a 
truthful answer from evasive respondents, both the 
questioning and the estimation procedures are rather 
complicated compared to the direct questioning technique 
partly because the function )(⋅g  sometimes includes some 
randomization processes. We shall outline two indirect 
techniques below. 

The randomized response is the most popular among the 
indirect techniques, and various modifications have been 
proposed (Abul-Ela, Greenberg and Horvitz 1967; Warner 
1971; Chaudhuri and Mukerjee 1988; Greenberg, Abul-Ela, 
Simmons and Horvitz 1969; Takahasi and Sakasegawa 
1977). Although the randomized response is not the topic of 
this article, we shall briefly outline Warner’s original 
procedure here for reference, because this technique will be 
simulated in a later section. 

 
1. Prepare two types of questionnaires. In question-

naire A, respondents are asked “Do you belong to 
?)(TU ,” and in questionnaire B, respondents are 

asked “Do you belong to ?)(
c
TU ”  

2. Let )5.0( ≠p  be the predetermined probability. 
Each respondent selects questionnaire A or B with 
probabilities p or p−1  respectively, but no one 
other than the respondent knows which 
questionnaire is selected. 
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3. Suppose X is an indicator variable whose value is 1 if 
the response is “yes” or 0 if the response is “no.” The 
estimator of π is given by 

,
12

1
ˆ

−
+−=π

p

xp
 (1) 

where x  is a sample mean of X.  
Since the researchers have no information regarding the 
type of questionnaire selected by each respondent, more 
respondents are expected to give truthful answers than they 
would if asked direct questions. 

The item count technique, which is the subject of this 
article, is not as popular despite its simplicity. The technique 
is also effective when posing sensitive questions, because 
respondents are asked not to answer sensitive questions 
directly but to merely report the number of items that hold 
true with them. The following are the processes of the item 
count technique:  

1. Prepare the key item T, which is the primary focus 
of the study, and G other non-key items .,,1 GEE K  
For example, T is “using a certain illegal drug” as 
mentioned above, and gE  is some sort of non-
sensitive description such as “owning a bicycle.”  

2. Prepare two types of questionnaires, A and B. In 
questionnaire A, respondents are asked to answer 
the number AC  of items that are true with respect 
to themselves among G non-key items. In 
questionnaire B, respondents are asked to answer 
the number BC  of items that are true with respect 
to themselves out of 1+G  items, including the key 
item T.  
Table 1 lists examples of item lists. Our aim is to 
estimate the proportion of people who use a certain 
illegal drug. The key item is “using a certain illegal 
drug” in the questionnaire B and the other four items 
are non-key items. Except when a response to the 
questionnaire B is 0=BC  or ,5=BC  researchers 
cannot detect as to which items hold true with the 
respondent. For example, a respondent will reply that 
four items in the questionnaire B are true, but we 
cannot be sure that the respondent uses the drug at all. 
Hence, it is expected that more respondents using an 
illegal drug will report truthful answers in such a 
scenario than when asked a direct question.  

3. Divide a total sample into two subgroups, A and B, 
randomly of size An  and Bn  so that each question-
naire is assigned to a corresponding subgroup. 

 

Table 1 
Examples of Item Lists 

 

Questionnaire A  Questionnaire B 
How many of the following hold true 
for you? 

 How many of the following hold 
true for you? 

– owning a bicycle  – owning a bicycle 
– having travelled abroad  – having travelled abroad 
– having called an ambulance  – having called an ambulance 
– owning a summer villa  – using a certain illegal drug 
    – owning a summer villa 

 
4. The estimator of π is given by 

,ˆˆˆ AB CC −=π  (2) 

where AĈ  and BĈ  are the estimated means of AC  
and BC  respectively. The justification of (2) is 
explained in section 2.1. When every unit in the 
sample has an equal inclusion probability, π̂  can be 
written as 

,ˆ
0

1

0
A

A
c

G

c
B

B
c

G

c n

n
c

n

n
c ∑∑

=

+

=
−=π  (3) 

where A
cn  and B

cn  are the number of respondents 
whose answers are cC A =  and ,cC B =  respectively. 
Moreover, when an auxiliary variable Z is available 
and its distribution zmzZP == )(  in the population 
is known, for example from a census, poststrati-
fication is often used to adjust the sample distribution 
of Z to the population. That is, the poststratified 
estimator of π is given by 
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where A
czn  is the number of respondents for each 
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and ,,, BB
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B
cz nnn ⋅  and B

zv  are defined in analogous ways. 
One practical merit of the item count technique is that it 

does not demand any randomization devices, which are 
required for the randomized response technique. It is not the 
respondent but a researcher who selects the questionnaire to 
be answered. Hence, the item count technique is easily 
implemented via any self-administered or telephone 
surveys. A more elaborate comparison between the 
randomized response and the item count technique is found 
in Hubbard, Casper and Lessler (1989). 
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The questionnaire A is introduced to obtain the distri-
bution of the number of non-key items. That is, respondents 
to the questionnaire A do not answer the sensitive question. 
Therefore, it is possible to increase the precision of the 
estimator using the double-list version of item count 
(Droitcour et al. 1991), which exchanges the roles between 
the two subgroups. However, we limit our argument in this 
article to a single-list version, because the extension of 
estimators to the double-list version is straightforward.  
1.2 Purpose of this Article  

Thus far, we have focused on the parameter 
)1( ===π YPY  of a total population. However, esti-

mators in subpopulations or domains (Särndal, Swesson and 
Wretman 1992 page 5) are often required, i.e., either a 
conditional proportion )|1( zZYP ==  or a joint proportion 

),1( zZYP ==  must be estimated, where a population is 
divided into several domains by the Z – value. We refer to 
the variable Z as the domain variable in this article. The 
domain variables often used are demographic characteristics 
such as gender or age. For example, government agencies 
would like to know the proportion of people who use a 
certain illegal drug at each age group. Even though the post-
stratified estimator PSπ̂  in (4) uses the domain variable Z, its 
aim is an estimation of )1( =YP  in the entire population. 
Our aim in this article is to obtain separate estimations of 

)|1( zZYP ==  within each domain. 
One simple estimation method is as follows:  
1. Post-stratify the sample into strata or domains 

based on the Z – value.  
2. In each stratum or domain, separately determine 

)|1( zZYp ==  using (1) or (2), where )(⋅p  is a 
sample estimate of ).(⋅P   

3. If necessary, estimate ),1( zZYp ==  by multi-
plying a known domain proportion, ),( zZP =  or 
an estimated domain proportion, ).( zZp =   

The above method is referred to throughout this article as a 
stratified method because estimates are obtained separately 
in each stratum or domain. Although Rao (2003) refers to 
the above method as a direct estimate, we have avoided the 
use of the term “direct” in order to avoid confusion with the 
term “direct questioning technique.” 

An advantage of the stratified method is that this method 
is applicable to any indirect questioning technique, 
including the randomized response and item count 
techniques. The U.S. General Accounting Office (1999) 
adopts the stratified method to estimate domains under the 
three-card technique. However, one of the serious problems 
of the stratified method is that it often produces illogical 
estimates, especially negative estimates, in the case of the 
randomized response and the item count, as explained later 

in this article. This is mainly because the reduction of the 
sample size in each stratum increases the standard errors of 
the estimators (Lessler and O’Reilly 1997). For example, 
Droitcour et al. (1991, page 206) “calculated estimates 
separately for the three risk strata” and obtained negative 
prevalence rate estimates of drug use. 

In the case of the randomized response, there is little 
possibility that domain estimators other than the stratified 
method are developed because information concerning the 
type of questionnaire selected by individual respondents is 
unavailable. In contrast, in the item count technique, the 
questionnaire answered by each respondent is known. 
Therefore, the precision of the domain estimators is 
expected to increase when auxiliary information is used, 
specifically contingency tables between Z and AC  or .BC  

In this article, we propose new domain estimators for the 
item count technique, which are referred to as the cross-
based method and the double cross-based method. In 
addition, we will illustrate the fact that the new estimators 
are more efficient than the traditional stratified method by 
simulating the item count technique using data obtained 
from the survey of the Japanese national character 
concerning the significant attributes of the Japanese 
character. 

 
2. Domain Estimators for the Item 

         Count Technique  
2.1 Stratified Method  

Here, we reformulate the stratified method. Let us 
assume that the following equations hold true for each value 
of c and z.  
Assumption 1. 
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These assumptions imply that the difference in the 
distribution between AC  and BC  depends solely on Y. 
Question effects, including order effects and context effects 
(Schuman and Presser 1981) are not considered. 

We have the following result based on these 
assumptions.  
Stratified Method. 
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where A
zC  and B

zC  are the domain means of AC  and .BC   
Derivation. 
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Transposing the first term to the left-hand side yields the 
stratified method (5). 

The estimator )|1( zZYp ==  is obtained by substituting 
domain means A

zC  and B
zC  with their estimators, A

zĈ  and 
.ˆ B

zC  

.ˆˆ)|1( A
z

B
z CCzZYp −===  (7) 

When the inclusion probabilities are equal for all units in the 
sample, the estimator of )|1( zZYP ==  is written as 
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where ,,, A
z

B
cz

A
cz nnn ⋅  and B

zn⋅  are defined in the section 1.1. 
The equations (2) and (3) for the entire population are 
special cases of (7) and (8). 

One merit of the stratified method is that the variance 
estimator of )|1( zZYp ==  is easily obtained by 

).ˆ(arV̂)ˆ(arV̂))|1((arV̂ A
z

B
z CCzZYp +===  (9) 

On the other hand, as noted in the previous section, the 
reduction of sample size in each stratum increases estimated 
variances in (9). Further, the marginal estimator )1( =Yp  
obtained by using (8) does not correspond to that obtained 
directly by (3), unless B

z
A
z nn ⋅⋅ =  for all z. That is, when 

)( zZp =  is not known, its estimator is given by 
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When the domain proportion zmzZp == )(  is available, 
the marginal estimator corresponds to the poststratified 
estimator (4). 
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These results indicate that we should use a poststratified 
estimator PSπ̂  with the domain estimators if we use the 
stratified method.  
2.2 Cross-based Method  

In the stratified method, a total sample is divided into 
strata for the purpose of direct estimation of 

),|1( zZYP ==  which causes sample size reduction. 
Hence, in the cross-based method proposed in this section, 
the joint proportion ),1( zZYP ==  is estimated first in 
order to use the entire sample, and the conditional 
proportion is subsequently obtained by 
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The term ‘cross-based method’ is used because this method 
uses cross tabulations ),|( cCzZP B ==  as shown in (19). 

For the cross-based method, we assume that the 
following equations hold for each value of c.  
Assumption 2. 

),1,()1,1( ====+= YcCPYcCP AB  (11) 

,0)1,1()1,0( ==−==== YCPYCP AB  (12) 

.)0,()0,( ===== YcCPYcCP AB  (13) 

These assumptions also imply that the difference in the 
distribution between AC  and BC  depends only on Y. 

We have the following result based on these 
assumptions.  
Cross-based Method. 
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In addition, we assume that ==== )1,|( YcCzZP B  
)|( cCzZP B ==  for every .0>c  This assumption 

would be valid to some degree when both the key and non-
key items describe the same type of stigmatizing behavior. 
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Derivation. 
Based on the assumptions, we have 
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The following equation holds for any c. 
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Hence, substituting (16) in (15) gives 
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Summing (17) over c up to some g, we obtain 
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By transposing the terms, we define .cQ  
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Here, the joint proportion ),1( zZYP ==  is 
decomposed as 
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Substituting the equation (18) and the assumption (12) in 
(19) yields the cross-based method. 

The joint estimator ),1( zZYP ==  is obtained by 
substituting each term of (14) for its estimators. When the 
sample is self-weighting, the estimator is given by 
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The conditional estimator )|1( zZYp ==  is obtained by 
dividing )|1( zZYp ==  by the domain proportions 

)( zZP =  or their estimators ).( zZp =  
As noted above, the main feature of the cross-based 

method is that ),1( zZYp ==  is first estimated using the 

entire sample. Hence, the variance of )|1( zZYp ==  for 
the cross-based method is expected to be smaller than that 
of )|1( zZYp ==  for the stratified method. Moreover, 
negative values will seldom be obtained in the case of the 
cross-based method, while the negative values will be often 
obtained in the case of the stratified method. Furthermore, 
the marginal estimator )1( =Yp  obtained by summing (20) 
is equal to the estimator (3), unless 0=⋅

B
cn  for some c: 
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(21)

 

Of course, when the domain proportions zmzZP == )(  are 
known, we can use them to obtain a poststratified estimator 

)( dCp A =  of )( dCP A =  in 1−cQ  of (14), 
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In this case, ),1( zZYpz ==∑ coincides with the post-
stratified estimator .ˆ PSπ  

One drawback of the cross-based method is that the 
variance of )|1( zZYp ==  is almost impossible to estimate 
algebraically. Hence, some resampling methods such as the 
jacknife or bootstrap would be necessary. Additionally, 
since it is impossible to determine the more efficient method 
between the stratified method and the cross-based method, 
simulation studies shall be conducted in a later section.  
2.3 Double Cross-based Method  

Before proceeding to the simulation study, we suggest a 
modified version of the cross-based method. In equation 
(19) of the cross-based method, we use ).|( cCzZP B ==  
In the same way, when )|( cCzZP A ==  is used, we obtain 
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Hence, a double cross-based method is obtained by 
combining (14) and (22) as follows: 
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where Aw  and Bw  are the non-negative weights for each 
subgroup, the sum of which is equal to one. 

The following equation also holds for the double cross-
based method of any Aw  and Bw , unless 0=⋅

A
cn  or 

0=⋅
B
cn  for some c. 

.ˆ),1( π===∑ zZYp
z
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3. Numerical Experiments  

3.1 Data Set  
In order to compare the precision of the estimators, we 

conducted simulation experiments using data obtained from 
the survey of the Japanese national character (Sakamoto, 
Tsuchiya, Nakamura, Maeda and Fouse 2000). Although 
the respondents were selected via a stratified two-stage 
sampling from Japanese aged 20 and over, we neglect the 
sampling design because the collected sample of 339,1=N  
is treated as the “true” population in this experiment. Table 
2 lists the results of a question concerning the significant 
attributes of the Japanese character. Respondents were 
asked in a face-to-face interview to choose as many 
adjectives from among ten alternatives as they thought 
described the Japanese character.  

Table 2 
Significant Attributes of Japanese character  

 

   N = 1,339
(Hand card) Which of the following adjectives do you think describes 
the character of the Japanese people? Choose as many as you like. 
1 Rational 18% 6 Kind 42% 
2 Diligent 71% 7 Original 7% 
3 Free 13% 8 Polite 50% 
4 Open, frank 14% 9 Cheerful 8% 
5 Persistent 51% 10 Idealistic 23%  

The form of this question is different from that of the 
item count technique. In the item count technique, the 
respondent is asked to “answer the number of adjectives.” In 
contrast, in this survey the respondent is asked to “circle as 
many adjectives you feel are appropriate.” In addition, the 
ten items are not very sensitive, hence the respondents 
should not hesitate during the selection. However, since the 
real contingency table between each of the ten items and 
another variable Z is obtained, we can evaluate the 
performance of estimators through a pseudo item count 
procedure. 

We took each of the following three items as the key 
item Y, where 1=Y  implies that the item was selected. 
 

– 7 Original ( π is the least among the ten items) 
 

– 8 Polite ( π  is just 50%) 
 

– 2 Diligent ( π  is the largest among the ten items) 

Three combinations of non-key items are used, as listed 
in Table 3. Combination 1 comprises two items with low 
proportions, while combination 2 comprises two items with 
high proportions. Combination 3 is the case with the 
maximum number of non-key items.  

Table 3 
Three Combinations of Non-key Items 

 

 Non-key items  
Combination 1 (G = 2): 9 Cheerful 

3 Free 
(8%) 

(13%) 
Combination 2 (G = 2): 5 Persistent 

6 Kind 
(51%) 
(42%) 

Combination 3 (G = 9): Nine items other than the key item  
We used either gender or age as the domain variable Z. 

Gender is either male or female, and the age categories are 
“20 – 29,” “30 – 39,” “40 – 49,” “50 – 59,” “60 – 69”, and 
“70 and over.”  
3.2 Direct Questioning Versus Item Count 
 Technique  
3.2.1 Simulation Methods  

First, we compare the standard errors between the direct 
questioning and the item count techniques. In this 
experiment, we attempted one combination of “7 Original” 
(key item), combination 3 (non-key items), and gender 
(domain variable). The contingency table based on the entire 
sample of 339,1=N  is listed in Table 4.  

Table 4 
A Contingency Table Between “7 Original” and Gender 

 

 7 Original   
 Y = 1 Y = 0 Total 

Male 46 (7.5) 569 (92.5) 615 (100.0) 
Female 51 (7.0) 673 (93.0) 724 (100.0) 

Total 97 (7.2) 1,242 (92.8) 1,339 (100.0)  
The simulation was conducted through the following 

procedures:  
Step 1. Suppose the total sample of 339,1=N  to be a 

population.  
Step 2. Draw a subsample S of size fN  where f is a 

sampling fraction with a simple random sampling 
without replacement.  

Step 3. As the simulated result of the direct questioning 
method, compute the proportion directly, 

)male|1( == ZYp  and )female|1( == ZYp .  
Step 4. Divide the subsample S into two groups AS  and 

BS  of size An  and Bn  that are not necessarily of 
equal size. Count the number AC  of selected non-
key items for each respondent in .AS  Also, count 
the number BC  of selected items including both 
the key item and the non-key items in .BS  
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Step 5. As the simulated result of the item count technique, 
compute )male|1( == ZYp  )female|1( == ZYp  
and via the three estimation methods; stratified 
method, cross-based method, and double cross-
based method. In the double cross-based method, we 
let )/( BAAA nnnw +=  and )./( BABB nnnw +=   

Step 6. We let 1.0=f  in step 2 and perform steps 2 to 5 
for 2,000 iterations. Calculate the means 

,,, CSD EEE  and WE  and the standard deviations 
,,, CSD SESESE  and WSE  of each estimation 

method to approximate the expectations and the 
standard errors of the estimators, where the 
subscripts D, S, C, and W, indicate the direct 
questioning method, the stratified method, the 
cross-based method, and the double cross-based 
method, respectively. In the same way, we let 

2.0=f  and perform steps 2 to 5 for 2,000 
iterations, and so on up to and including .9.0=f   

3.2.2 Simulation Results  
Figure 1 shows the approximated expectations and 

standard errors of the estimators. The horizontal axes 
indicate sampling fraction  f. In both the cases, male and 
female, the approximated expectations of DE  are stable at 
every f – value while ,, CS EE  and WE  of the item count 
technique fluctuate irregularly. This is because randomness 
is introduced twice under the item count, i.e., in the 
sampling phase and in the division phase, whereas 
randomness is introduced only in the sampling phase under 
the direct questioning scenario. Even if ,1=f  the estimator 
under the item count technique has a certain amount of 
variance due to the randomness at the division phase. As the 
range of fluctuation was negligible compared to the 
magnitude of the standard errors, which are referred to 
below, we concluded that the number of repetition was 
sufficient. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Approximated Expectations and Standard Errors of Estimators. 
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The standard errors, ,DSE  of the direct questioning 
method is considerably small compared to those of the item 
count. In the case of the item count, standard errors do not 
converge to zero even if .1=f  As noted above, this is 
because the randomness is also introduced in the division 
phase. The standard errors of the stratified method are 
obviously larger than those of the two cross-based methods. 
The lines indicating the results for the cross-based method 
and the double cross-based method almost overlap, and 
appear to have no outstanding differences. 

In order to evaluate the amount of variances or standard 
errors of estimators, let us consider the following indices 
that are analogous to the design effect (Kish 1965), 

,Def 2

2

,

2

1

21

M

M
MM SE

SE
=  

where 1M  and 2M  indicate one of the four methods D, S, 
C, and W. Although we have omitted the detailed results, 
roughly summarized, DC ,Def  ranges from 50 (when 

1.0=f ) to 700 (when 9.0=f ). That is, even if we use the 
cross-based method, the standard errors of the item count 
inflate nearly seven- to twenty-six-fold as compared to the 
direct questioning. However, the variance reduction attained 
by using the double cross-based method instead of the 
stratified method ranges from 39.0Def , =SW  (male) to 0.55 
(female). In other words, the standard errors of the double 
cross-based method are reduced to about 62 percent of the 
stratified estimate at the minimum, and 74 percent at the 
maximum.  
3.3 Stratified Versus Cross-based Method  
3.3.1 Simulation Methods  

In the previous section, the precision of the cross-based 
and the double cross-based method appeared to be larger 
than those of the stratified method.  We shall check the 
precision of these methods for other combinations of the key 
item, the combination of non-key items, and the domain 
variable Z by simulation experiments. 

In this section, we used all samples as follows:  
Step 1. Compute )|1( zZYP ==  for each z  based on all 

data of size .339,1=N   
Step 2. Divide the total sample ( 339,1=N ) randomly into 

group A and group B of size An  and Bn  where 
.BA nnN +=   

Step 3. Count the number AC  of selected non-key items 
for each respondent of group A, and count the 
number BC  of selected items, including both the 
key item and non-key items, in group B.  

Step 4. Estimate )|1( zZYp ==  by the stratified method, 
the cross-based method, and the double cross-based 
method, respectively. 

Step 5. Compute the chi-squared distance 2e  between 
)|1( zZYP ==  and )|1( zZYp ==  for each 

method. 

∑ ==
==−===

z zZYP

zZYPzZYp
e

)|1(

)}|1()|1({ 2
2  

Step 6. Repeat the above procedure from step 2 through 
step 5 for 1,000 iterations. Calculate the means and 
the standard deviations of 2e  for each method.  

In addition, we simulated the stratified method under the 
randomized response for references via the following 
procedure:  
Step 1. Let p be a proportion as described below. Divide 

the total sample )339,1( =N  randomly into two 
groups. Group A is composed of Np  respondents, 
and group B is composed of )1( pN −  respondents.  

Step 2. Let A
zn  be the number of respondents who selected 

the key item and zZ =  in group A. Let B
zn  be the 

number of respondents who did not select the key 
item and zZ =  in group B. Let zn  be the number 
of respondents with .zZ =  Compute 

.
12

/)(1

339,1
)|1( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
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nnnpn
zZYp z
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Step 3. Calculate 2e  employing the same equation as used 

in the item count technique.  
Step 4. Repeat the above procedure from step 1 through 

step 3 for 1,000 iterations. Calculate the means and 
the standard deviations of 2e  for each method.  

We used three p values; ,3.0,2.0 == pp  and .4.0=p   
3.3.2 Simulation Results  

Table 5 and Table 6 list the means and the standard 
deviations of 1,000 s2e  for the domain variable Z of gender 
and age, respectively. A smaller mean of “ 2e –value” indi-
cates that the domain estimators are more precise. In some 
repetitions, illogical estimates ),|1( zZYp ==  which 
deviate from the range [0, 1], were obtained. The columns 
of the tables denoted by “under” indicate the number of 
repetitions when at least one of the estimates 

)|1( zZYp ==  was under 0, and “over” indicates that the 
estimates were over 1. Ideally, the figures of the columns of 
“illogical p” should be 0. 
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Table 5 
Means and Standard Deviations of s2e  and Number of Times Illogical Estimates were Obtained (Domain Variable Z is Gender) 

 

 7 Original (7%) 8 Polite (50%) 2 Diligent (71%) 
 2e –value illogical p 2e –value illogical p 2e –value illogical p 

 mean (s.d.) under over mean (s.d.) under over mean (s.d.) under over 
Stratified method             
 Combination 1 38 (36) 39 0 6 (6) 0 0 4 (4) 0 0 
 Combination 2 89 (92) 179 0 16 (17) 0 0 10 (11) 0 0 
 Combination 3 341 (330) 457 0 44 (43) 0 0 33 (32) 0 7 
Cross-based method            
 Combination 1 18 (24) 1 0 4 (5) 0 0 3 (3) 0 0 
 Combination 2 45 (65) 41 0 10 (12) 0 0 7 (8) 0 0 
 Combination 3 163 (239) 186 0 22 (31) 0 0 17 (23) 0 1 
Double cross-based method           
 Combination 1 18 (24) 1 0 3 (4) 0 0 2 (3) 0 0 
 Combination 2 45 (65) 31 0 9 (12) 0 0 6 (8) 0 0 
 Combination 3 163 (240) 177 0 21 (31) 0 0 16 (23) 0 0 

Randomized response           
 p = 0.2 12 (14) 0 0 3 (3) 0 0 2 (2) 0 0 
 p = 0.3 35 (43) 41 0 8 (7) 0 0 5 (5) 0 0 
 p = 0.4 158 (181) 305 0 35 (34) 0 0 23 (23) 0 3 

 Note: 2e –value is multiplied by 103.  
Table 6 

Means and Standard Deviations of s2e  and Number of Times Illogical Estimates were Obtained (Domain Variable Z is age) 
 

 7 Original (7%) 8 Polite (50%) 2 Diligent (71%) 
 2e –value illogical p 2e –value illogical p 2e –value illogical p 

 mean (s.d.) under over mean (s.d.) under over mean (s.d.) under over 
Stratified method            
 Combination 1 375 (226) 609 0 60 (39) 0 0 39 (26) 0 0 
 Combination 2 859 (507) 799 0 152 (91) 0 0 97 (58) 0 18 
 Combination 3 3,410 (2,108) 926 1 446 (290) 48 41 333 (217) 9 353 
Cross-based method            
 Combination 1 93 (82) 8 0 32 (20) 0 0 28 (16) 0 0 
 Combination 2 175 (195) 138 0 80 (42) 0 0 59 (33) 0 0 
 Combination 3 536 (733) 273 0 89 (95) 0 0 70 (71) 0 10 
Double cross-based method           
 Combination 1 70 (75) 8 0 13 (13) 0 0 9 (8) 0 0 
 Combination 2 153 (202) 93 0 45 (35) 0 0 31 (23) 0 0 
 Combination 3 526 (745) 246 0 72 (94) 0 0 52 (70) 0 1 

Randomized response           
 p = 0.2 158 (101) 284 0 25 (14) 0 0 17 (11) 0 0 
 p = 0.3 476 (294) 720 0 74 (42) 0 0 51 (31) 0 2 
 p = 0.4 2,181 (1,348) 945 0 335 (193) 9 9 232 (136) 0 217 

 Note: 2e –value is multiplied by 103.  
 
For every combination of the key item, the non-key 

items, and the domain variable Z, the means of 2e  of the 
double cross-based method are the smallest, and the cross-
based method is the second smallest by a narrow margin. 
When π  of the key item is low (“7 Original”), the number 
of non-key items is large (combination 3), and the number 
of alternatives of the domain variable Z  is large (age), the 
accuracy of the stratified method decreases greatly 
compared to other combinations. 

Moreover, when π  of the key item is low, negative 
estimates are often observed when the stratified method is 

used. For example, when combining “7 Original,” 
combination 3 and age, the frequency of observed negative 
estimates is 926 out of 1,000 iterations. When the double 
cross-based method is used, the negative estimates are less 
likely to be observed. 

For randomized response, when the number of 
alternatives of the domain variable Z is small (gender), the 
accuracy of the estimates seems to be the same as the cross-
based and the double cross-based methods. However, the 
mean 2e  is somewhat larger than that of the cross-based 
method when the domain variable Z has many options (age). 
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The randomized response, for which only the stratified 
method is available, also suffers from negative estimates, 
particularly when π  is small (“7 Original”). 

 
4. Conclusion  

The following results were obtained through simulation 
experiments:  

– The cross-based method or the double cross-based 
method, which is proposed in this article, should be 
used to estimate domain parameters when the data 
is obtained via the item count technique. In the first 
simulation, the variances of cross-based estimators 
were reduced to 39 percent of the variance of the 
stratified estimate at the minimum to 55 percent at 
the maximum. In the simulation studies, the double 
cross-based method made no drastic improvement 
in precision as compared to the cross-based 
method.  

– Even when the double cross-based method is used, 
the standard errors of the domain estimators are 
much larger than those of the direct questioning 
technique.  

The true )1( ===π YPY  of a question, to which 
respondents evade giving a truthful answer, would be often 
small. In addition, an indirect questioning technique is used 
in order to ensure protection of privacy. The respondents 
feel that their privacy is secured when many non-key items 
are included (Hubbard et al. 1989). The simulation studies 
show that in such situations, the cross-based method or 
double cross-based method is more efficient than the 
traditional stratified method. 

The domain estimators obtained by the traditional 
stratified method are generally inconsistent with the 
estimator π̂  as shown in (10). Poststratified estimator PSπ̂  
by the domain variable addressed is essential in order to 
ensure consistency. Alternatively, we have to divide the 
total sample into two subgroups so that the distributions of 
their domain variable match in advance. On the contrary, 
the domain estimators obtained by the cross-based and the 
double cross-based methods are consistent with π̂  as shown 
in (21). However, it does not mean that the cross-based 
method automatically adjusts the two subgroups so that the 
sample distributions of the domain variable match between 
the two subgroups. For the cross-based method, post-
stratification by the domain variables or other demographic 
variables is also admissible, but not indispensable. 

Even when the double cross-based method is used, 
negative domain estimates are sometimes observed. It is 

possible to avoid negative estimates by letting a negative 
estimate cq  of cQ  in (23) be zero. However, such an 
adjustment produces a positive bias in ).|1( zZYp ==  

The data of the survey of the Japanese national character, 
which were used in the simulation experiments, are neither 
sensitive nor were they obtained via the item count 
technique. In the future, the performance of the proposed 
method should be assessed by applying it to data obtained 
via the item count technique. 
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Editing Systematic Unity Measure Errors Through Mixture Modelling 

Marco Di Zio, Ugo Guarnera and Orietta Luzi 1 

Abstract 

In Official Statistics, data editing process plays an important role in terms of timeliness, data accuracy, and survey costs. 
Techniques introduced to identify and eliminate errors from data are essentially required to consider all of these aspects 
simultaneously. Among others, a frequent and pervasive systematic error appearing in surveys collecting numerical data, is 
the unity measure error. It highly affects timeliness, data accuracy and costs of the editing and imputation phase. In this 
paper we propose a probabilistic formalisation of the problem based on finite mixture models. This setting allows us to deal 
with the problem in a multivariate context, and provides also a number of useful diagnostics for prioritising cases to be more 
deeply investigated through a clerical review. Prioritising units is important in order to increase data accuracy while 
avoiding waste of time due to the follow up of non-really critical units. 

                                                           
1. Marco Di Zio, Ugo Guarnera and Orietta Luzi, Italian National Statistical Institute, Via Cesare Balbo 16, 00184 Roma, Italy. 

  
Key Words: Editing; Random error; Systematic error; Selective editing; Model-based cluster analysis. 
 
 

 

1. Introduction  
Elements determining the quality of an Editing and 

Imputation (E&I) process are various and have been widely 
discussed in literature (Granquist 1995). We deal with a 
particular non-sampling error that highly affects two main 
competing quality dimensions: timeliness and data accura-
cy. As far as accuracy is concerned, we adopt the definition 
suggested in the Encyclopedia of Statistical Sciences, 
(1999): “accuracy concerns the agreement between statistics 
and target characteristics”. A number of factors can cause 
inaccuracy along the overall statistical survey process. 
Inaccuracy can be reduced during the E&I phase, which can 
be viewed as an “accuracy improvement tool by which 
erroneous or highly suspect data are found, and if necessary 
corrected (imputed)” (Federal Committee on Statistical 
Methodology 1990). 

Due to the complexity of investigated phenomena and 
the existence of several types of non-sampling errors the 
E&I phase can be a very complex and time consuming task 
(Granquist 1996). In the specialised literature a common 
error classification leads to define two different error 
typologies: systematic error and random error. The former 
relates to errors which go in the same direction and lead to a 
bias in statistics, while the latter refers to errors which 
spread randomly around zero and affect the variance of 
estimates (Encyclopedia of Statistical Sciences 1999). Un-
derstanding nature of errors is not only useful in order to 
identify their source and to assess their effects on estimates, 
but also to adopt the most appropriate methodology to deal 
with them (Di Zio and Luzi 2002). While the Fellegi – Holt 
approach (Fellegi and Holt 1976) is a well-established 
paradigm to deal with random errors, systematic errors are 
generally treated by means of ad hoc solutions (see for 

instance Euredit 2003, Vol. 1, Chapter 5). Systematic errors 
are generally treated before dealing with random errors, 
particularly when the latter are tackled through automatic 
software, like for instance the Generalised Editing and 
Imputation System (GEIS) (Kovar, Mac Millan and 
Whitridge 1988) and more recently De Waal (2003).  

In the family of systematic errors, one that has a high 
impact on final estimates and that frequently affects data in 
statistical surveys measuring quantitative characteristics 
(e.g., business surveys) is the unity measure error times a 
constant factor (e.g., 100 or 1,000). This error is due to the 
erroneous choice, by some respondents, of the unity 
measure in reporting the amount of some questionnaire 
items.  

As real examples of surveys affected by this type of 
error, we selected two ISTAT investigations: the 1997 
Italian Labour Cost Survey (LCS) and the 1999 Italian 
Water Survey System (WSS). 

The LCS is a periodic sample survey that collects 
information on employment, worked hours, wages and 
salaries and labour cost on about 12,000 enterprises with 
more than 10 employees. In Figure 1 the logarithm of 
Labour Cost (LCOST), Number of Employees 
(LEMPLOY), Worked Hours (LWORKEDH) are repre-
sented in a scatter plot matrix. Note that the employment 
variable at this editing stage is error free because of a 
preliminary check with respect to information from business 
registers (Cirianni, Di Zio, Luzi and Seeber 2000). The 
analysis of Figure 1 shows that Labour Cost is affected by 
two types of unity measure error (i.e., 1 million and 1,000 
factor), while Worked Hours exhibits only the 1,000 factor 
error. These errors cause the different clusters in Figure 1. 
Note that the clusters in the low left corners of each scatter 
plot represent non-erroneous data. 
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Figure 1. Multiple scatter plot between total labour cost, 
  employees, worked hours (logarithmic scale).  
The WSS example will be described in detail in 

subsection 4.2 where an application of the method proposed 
in this paper for identifying and treating the unity measure 
error will be presented. 

For the unity measure error, the critical point is the 
localisation of items in error rather than their treatment. In 
fact, once an item is classified as erroneous, the optimal 
treatment is uniquely determined and consists in a 
deterministic action recovering the original value through an 
inverse action (e.g., division by 1,000) neutralising the error 
effect.  

The unity measure error is generally tackled through ad 
hoc procedures using essentially graphical representations 
of marginal or bivariate distributions, and ratio edits. A ratio 
edit is a rule stating that the value of a ratio between two 
variables must lie within a predefined interval. The interval 
bounds are generally determined through a priori knowledge 
or via exploratory data analysis, possibly using reliable 
auxiliary information. For this type of error, ratio edits are 
effective when one of the two variables is error free. Fur-
thermore ratio edits allow taking into account only bivariate 
relationships between variables and even using interactive 
graphical inspection (e.g., scatter plot matrix), no more than 
a pairwise analysis can be performed, disregarding more 
complex interactions between variables. Finally, we notice 
that adopting pairwise analyses implies that variables are to 
be treated in a pre-defined hierarchy, thus increasing the 
complexity of the error localisation procedure.  

With traditional approaches, the error localisation prob-
lem is not only complex, but also time and cost consuming. 
Time and cost are mainly affected by: 1) the complexity of 
designing and implementing automatic deterministic ad hoc 
procedures, and 2) the resources spent in manually editing 

observations having low probabilities of being in error 
and/or low impact on target estimates (over-editing). 

In this paper we propose a probabilistic formalisation of 
the problem through finite mixture models (McLachlan and 
Basford 1988; McLachlan and Peel 2000). 

This modelling can provide a principled statistical 
approach, allowing an estimate of the conditional probabil-
ity that an observation be affected by unity measure error. 
The advantage of the proposed approach is that it represents 
a general method allowing a multivariate data analysis, and 
providing elements that can be used to optimise the balance 
between the automatic and interactive components of the 
editing procedure, i.e., between time and accuracy 
(Granquist and Kovar 1997).  

This work is organised as follows. In section 2 the 
proposed model is introduced together with the EM 
algorithm for the estimates of the model parameters. In 
section 3 diagnostics for selective editing are described. In 
section 4 the results of the application of the proposed 
method to both simulated and real data are illustrated. 
Finally, in section 5 concluding remarks and future research 
are outlined. 

 
2. The Model  

It is hard to give a comprehensive formalisation of 
random and systematic errors. In this context, we provide a 
definition that, though not exhaustive, includes many com-
mon situations. Let *X  be the vector of the survey target 
variables, and ),( ∑*μ   the corresponding mean vector and 
covariance matrix. Let us suppose that the measurement 
process is affected by a random error mechanism R having 
impact on the covariance structure of *X  but leaving the 
mean vector unchanged, and consequently let X  be the 
corresponding “contaminated” variable, with =)(XE  

=)( *XE =, )(Var Xμ .∑  Also, we assume that X  can 
in turn be affected by a systematic error mechanism S acting 
only on its expected value: )(μ μϕ⎯→⎯S  for some function 
ϕ  (e.g., if an additive error mechanism is assumed, =ϕ )(μ  

).constant+μ  As a consequence of the two error mecha-
nisms, assumed to be independent of one another, observed 
data can be described by a random vector Y  whose 
distribution, conditional on ,X  depends only on the 
systematic error mechanism. Our approach to the treatment 
of systematic errors consists of building up a model for Y  
focusing only on the detection of systematic errors, thus 
aiming at recovering the randomly contaminated data 
represented by the random vector .X  This is the approach 
generally adopted in editing procedures, where systematic 
errors and random errors are dealt with separately and 
hierarchically.  

LWORKEDH 

LEMPLOY 

LCOSTS 
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The previous definition of systematic error includes unity 
measure error, once data have been transformed in loga-
rithmic scale. In fact, unity measure error generally acts 
multiplying variables by a constant factor. Hence data in 
error appear in log-scale as translated by a vector of 
constants, that depends on which items are in error (“error 
pattern”), while the covariance structure is the same for each 
error pattern. Moreover, as matter of fact, in business sur-
veys variables are frequently considered log-normal. Thus 
in logarithmic scale the Gaussian setting can be adopted. 

Following the formalisation so far introduced, our goal 
becomes to assign each single observation to a specific 
“error pattern”, that corresponds to localise items in error. If 
we interpret each single error pattern as a “cluster”, the error 
localisation problem is transformed in a cluster analysis 
problem, and we can exploit experiences from the model-
based cluster analysis theory (Fraley and Raftery 2002).  

More in detail, let us suppose we have n  independent 
observations ),...,,( 1 iqii YY=Y ,...,,1 ni =  corresponding 
to the −q dimensional vectors )...,,( 1 iqii XX=X  with 
p.d.f. ),;...,,( 1 θqxxf  such that =)...,,( 1 qXXE  

,= μ)μ...,,μ( 1 q  and =)...,,(Var 1 qXX .∑  
Based on the assumption that systematic errors affect the 

random vector X  only by transforming its expected value 
μ  into ),(μgϕ  where ,RR:)( qq

g →⋅ϕ  for ,...,,1 hg =  
are a set of known functions, the functions gϕ  characterise 
univocally h  distinct clusters (error patterns), differing each 
other only on the location parameter. For instance, if the 
systematic error possibly affects all the variables sX  for 

,...,,1 qs =  in the same manner by transforming their 
expected values sμ  according to ,μμ Css +→  where C  is 
a known constant, the number of clusters will be ,2qh =  
i.e., the number of different combinations of error 
occurrence on the q  variables (including the case of no 
error). In this case, each function gϕ  and each 
corresponding cluster, is associated with one of the q2  
possible sub-sets of variables affected by the error; e.g., the 
group G  characterised by the mean vector =Gμ  

,)μ...,,μ,μ,μ,μ( 4321 qC+  is a cluster of units with 
error affecting only the variable 2X . We remark that we 
assume a common covariance matrix because we make the 
hypothesis that the possible random error acts in the same 
way on all the data.  

For the error localisation purpose we follow a model-
based approach based on finite mixture models, where each 
mixture component ,...,,1, hgGg =  represents a single 
error pattern. Formally, we assume that ,)...,,( 1 iqii YY=Y  
for ,...,,1 ni =  are iid w.r.t ),; (1 tt

h
t t f θ⋅π∑ =  where 

1=π∑t t  and 0≥πt . The mixing parameters tπ  represent 
the probability that an observation belongs to the tht  
mixture component.  

In order to classify an observation iy  in one of the h  
groups, we compute the posterior probability 

=τ ),;( πθig y  pr( thi  observation ),,;| πθigG y∈  that is 

....,,1
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The thi  observation is assigned to the cluster ,tG  if 

.;...,,1),;(),;( tghgigit ≠=πτ>τ θπθ yy  

The previous allocation rule is the optimal solution for 
the classification problem, in the sense that it minimises the 
overall error rate (Anderson 1984, Chapter 6 ).  

Since, in place of the parameters ,),( πθ  generally 
unknown, we use the maximum likelihood estimates 

),ˆ,ˆ( πθ  the classification rule becomes: 

.;...,,1)ˆ,ˆ;()ˆ,ˆ;( tghgigit ≠=πτ>πτ θθ yy  (2) 

We assume that the );( ttf θy  is a multivariate normal 
density ,( tμMN )∑  and that each function )(⋅gϕ  acts on 
the mean vector μ  as a translation: ,)( gg C+=ϕ μμ  where 

gC  represents the translation vector for the mean of the thg  
cluster, and it is supposed to be known. This setting, as 
already noticed, is suitable for dealing with unity measure 
error. In order to compute the likelihood estimates, we use 
the EM algorithm as suggested in McLachlan and Basford 
(1988). Nevertheless, an additional effort is necessary to 
adapt the algorithm to our particular situation, where the 
mean vectors of the mixture components are linked by a 
known functional relationship. Thus, while in the non-
constrained case (McLachlan and Basford 1988) a different 
mean vector has to be estimated for each mixture 
component, in our constrained situation only one mean 
vector needs to be estimated. The resulting modified EM 
algorithm consists of defining some initial guess for the 
parameters to be estimated forˆ )0(

gπ  ,...,,1 hg =  
,ˆ( )0(μ )ˆ )0(∑  and applying until convergence the following 

recursive scheme:  
i) compute the posterior probabilities =τ )(k

gi  
) ,;()( πθi

k
g yτ  under the current estimates ,ˆ )(kπ  

,ˆ )(kμ )(ˆ k∑  (k is the index referring to the thk  cycle) 
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ii) calculate the new estimates by the following recursive 
equations: 
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We remark that )(ˆ k
gμ  stands for g

k C+)(μ̂ . 
In practical applications, it turns out that a crucial role is 

played by the choice of starting points, as usual in the EM 
algorithms (see Biernacki, Celeux and Govaert 2003). To 
overcome this problem, we use an initialisation strategy, 
following Biernacki et al. (2003), consisting of several short 
runs in terms of number of iterations, of the algorithm from 
random initialisations followed by a long run of EM from 
the solution maximising the observed log-likelihood. 

It is worth to mention that, due to the location constraints, 
the parameters to be estimated are sensibly fewer than those 
in a usual mixture problem. Actually the higher is the 
number of variables analysed the bigger is this difference; 
for instance in the case of three variables and 8 clusters we 
need to estimate 16 parameters instead of 37. This aspect is 
particularly important when we deal with small samples. 
Moreover, constraints on cluster locations make easier to 
identify “rare clusters”. In fact, being the relative distances 
between mean vectors fixed, the estimation problem reduces 
to estimate the location of the convex polyhedron whose 
vertices are the cluster centroids. In other words, since the 
location of one centroid univocally determines the positions 
of all the others, small cluster parameters are more easily 
estimated than if they were not constrained.  

Since the introduced modelling is based on the 
assumption that observations are normally distributed, 
model validation is an issue to take into account. The 
problem of assessing normality in mixture models is well 
described in McLachlan and Basford (1988). It is essentially 
based on the quantities giâ  described in the following. Let 

giy  for gmi ˆ...,,1=  be the observations assigned to the 
thg  cluster for hg ...,,1= , according to the estimated 

model. Let gip̂  be the value calculated using the estimated 
parameters, following the formula: 
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where );,(D M⋅⋅  is the Mahalanobis squared distance 
based on the metric ,M  and .qhn −−=ν  We define giâ  

as the area to the right of the gip̂  value under the ν,qF  
distribution (for details see McLachlan and Basford 1988, 
Chapter 2). 

Under the normality assumption, giâ  for gmi ˆ...,,1=  is 
approximately uniformly distributed on (0,1). Hawkins 
(1981) suggests using the Anderson – Darling statistic for 
assessing the uniform distribution of giâ . The giâ  are also 
useful to detect outliers, i.e., atypical observations with 
respect to the model. In McLachlan and Basford (1988) the 
lower is giâ  the higher is the probability of giy  of being 
atypical, thus all observations with ,ˆ α<gia  where α  is a 
specified threshold, can be considered as atypical. 
Suggested threshold levels range from 05.0=α  to 

,005.0=α  depending on which outlying observations 
(more or less extreme values) are to be selected.  

 
3. Diagnostics for Selective Editing  

Once the parameters of the mixture have been estimated, 
we are able to classify data into the different clusters, i.e., 
for each observation we can assess whether it is in error or 
not, and which variables are in error. However, different 
types of critical observations can be identified after the 
modelling phase: units classified in a cluster, but having a 
non-negligible probability of belonging to another cluster, 
and observations that are outliers with respect to the model.  

In order to increase data accuracy it would be useful to 
make a double check on critical observations (through either 
a clerical review or, in the most difficult cases, a follow-up). 
On the other hand, in order to reduce possible over-editing 
and editing costs, the manual review and/or follow up 
should be concentrated on the most critical observations. 
The proposed mixture model directly provides diagnostics 
that can be used to this aim.  

A first type of critical units is represented by possibly 
misclassified observations. In order to measure the degree of 
belief in the class assigned to an observation iy  we can 
consider the corresponding probability resulting from (2). 
Observations, for which this probability is not very close to 
one, have a non-negligible probability to belong to another 
cluster. These observations are those in the region where the 
mixture components overlap each other.  

In addition to the previous type of critical units, there are 
other observations that are far from all the clusters (all the 
mixture components), i.e., outliers with respect to the 
model. Also these observations represent critical situations. 
In order to identify this kind of outlier we refer to the 
quantities ijâ  described in the previous section.  

Classification probability and atypicality index giâ  
should be used, according to a selective/significance editing 
approach (Latouche and Berthelot 1992; Lawrence and 
McKenzie 2000), to build up appropriate score functions to 
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prioritise critical units. An example of how to use these 
diagnostics to this aim is given in subsection 4.2. 

 
4. Illustrative Examples   

In this section some experiments carried out in order to 
investigate the peculiarities of the proposed method are 
presented. Firstly, through a simulation study, we analyse 
the performance of the proposed model when applied to 
data that depart from normality. Secondly, through an 
application on real data, we describe how this approach can 
be applied in Official Statistics.  

All the experiments are performed using the R environ-
ment for statistical computing (http://www.r-project.org/).  
4.1 Simulated Example: Departure from Normality  

In this experiment we describe the results obtained by 
applying the mixture approach to the three different 
populations depicted in the first line of Figure 2. The first 
distribution is a bivariate normal (MN), hence it represents 
the case when the model is correctly specified. The second 
one corresponds to a bivariate t distribution (MT), i.e., it 
mimes the situation when the departure from normality is 
essentially in having heavier tails. The last one is a bivariate 
skew–t distribution (ST) (Azzalini and Capitanio 2003, 
Azzalini, Dal Cappello and Kotz 2003), and it represents a 

population distributed according to an asymmetric distri-
bution with heavy tails.  

From these distributions we build a four components 
mixture model by adding to each unit one of the four 
translation vectors ),0,0(1 =C  )),000,1log(,0(2 =C  

),0),000,1log((3 =C  ))000,1log(),000,1log((4 =C  with 
probabilities ,5.01 =π  ,1.02 =π  ,1.03 =π   and 3.04 =π  
respectively. These parameters represent the mixing 
proportions of the mixture model and refer respectively to 
the probabilities of no translation in the variables, translation 
in only one of the two variables, and translation in both 
variables. From each mixture, we draw 100 samples of 
1,000 observations. In the second line of Figure 2, we report 
one of these samples (MN – Mixt, MT – Mixt, ST – Mixt), 
corresponding to the three different populations MN, MT, 
ST respectively. 

For each sample, we compute the number of correct 
classifications obtained by using the mixture approach 
described in section 2. The mean number of correct 
classifications over the 100 samples is reported in Table 1.  

As it can be seen in Table 1, the frequency of correct 
classifications decreases with the departure from normality. 
However it seems acceptable also in the critical case ST, 
where the population is characterised by both asymmetry 
and heavy tails.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Contour plots of the three bivariate distributions multinormal (MN), t – student 
(MT), skew – t (ST), and scatter plot of the corresponding mixtures MN – Mixt,  
MT – Mixt, ST – Mixt. 

 

  

ST – Mixt MT – Mixt MN – Mixt 

ST MT MN 
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Table 1 
Frequency of Correct Classifications 

 

 MN MT ST 

% correctly classified 98.5  97.5 95.6 

 
As discussed in section 3, the mixture approach provides 

elements (such as the degree of atypicality and the 
classification probability) that can be used in order to 
prioritise units to be clerically reviewed. Therefore, an 
overall assessment of the procedure should consider also the 
results obtained through a selective editing approach based 
on these model diagnostics. 

In order to analyse the characteristics of atypicality index 
and classification probability, we examine a single sample 
of 1,000 observations drawn from the three populations so 
far introduced. In Figure 3, the three samples MN – Mixt(a), 
MT – Mixt(a), ST – Mixt(a) are represented, furthermore the 
misclassified units are depicted with a cross in the same 
graph. The number of misclassified units is 19 for 

Mixt,MN−  20 for MT – Mixt, and 36 for ST – Mixt. 
On this sample, we focus on the impact of different 

threshold levels both for atypicality )(α  and classification 
probability ).(β  For each threshold, we report in Table 2 
and Table 3 the number of units below that threshold, i.e., 
the number of critical observations (N. Atyp, N. Pr. Class), 

and among them the number of misclassified units (Atyp - 
Misclas, Pr. Class - Misclas).  

As far as atypicality is concerned, we note that when the 
model is correctly specified, the importance of the 
atypicality index in recovering misclassified units is 
negligible, while the classification probabilities are more 
effective. On the other hand the degree of atypicality is 
important when the model departs from normality. It is clear 
that the number of observations selected for a given 
combination of thresholds α  and β  is not equal to the sum 
of the frequencies obtained in Table 2 and Table 3. Thus, in 
order to evaluate the joint impact of these two indices we 
choose the two following thresholds 005.0=α  and 

.975.0=β  We report in Figure 3 (second line) the units 
selected only for the atypicality value (squares), only for the 
classification probability (triangles), and for both of them 
(crosses). From these figures we see how the impact of 
atypicality is mainly on outliers identification while the 
classification probability works on the overlapping regions. 
In Table 4 the number of selected units and, out of them the 
number of misclassified units are shown. 

We note that for population MN – Mixt, apart one 
observation, all the misclassified units are selected. For 

Mixt,MT−  we are able to select 14 out of the 20 
misclassified units, and in the most critical sample ST – Mixt 
we select 24 out of the 36 misclassified units.                            

Figure 3. Misclassified units (crosses) in MN – Mixt(a), MT – Mixt(a), ST – Mixt(a). Critical 
units for atypicality (square), for classification probability (triangle), and for both 
of them (cross), in MN – Mixt(b), MT – Mixt(b), ST – Mixt(b).  

MN – Mixt (b) MT – Mixt (b) ST – Mixt (b) 

ST – Mixt (a) MT – Mixt (a) MN – Mixt (a) 
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Table 2 
Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Atypicality 

 

 MN – Mixt MT – Mixt ST – Mixt 
α  N. Atyp Atyp – Misclas N. Atyp Atyp – Misclas N. Atyp Atyp – Misclas 

0.05 50 1 84 9 68 14 
0.01 15 0 50 7 33 8 
0.005 8 0 39 7 20 5 
0.001 4 0 25 4 14 2 

 
Table 3 

Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Classification Probability 
 

 MN – Mixt MT – Mixt ST – Mixt 
β  N. Pr. Class Pr. Class – Misclas N. Pr. Class Pr. Class – Misclas N. Pr. Class Pr. Class – Misclas 

0.99 119 19 63 12 182 26 
0.975 76 18 46 11 82 26 
0.95 55 14 35 9 66 21 

 
Table 4 

Number of Critical Observations and Misclassified Units with Respect to Atypicality and Classification Probability 
 

 MN – Mixt MT – Mixt ST – Mixt 
Thresholds N.Crit. Units N. Misclas  N.Crit. Units N. Misclas N.Crit. Units N. Misclas 

=α 0.005, =β 0.975 84 18 79 14 98 24 

 
 
4.2 An Application to Real Data: The 1999 Italian 

Water Survey System   
In this section we describe an application of the mixture 

model approach to real survey data. The data are taken from 
the 1999 Italian Water Survey System (WSS). The WSS is a 
census that collects information on water abstraction, supply 
and usage for the 8,100 Italian municipalities. We restrict 
our analysis to the municipalities belonging to one of the 
data domains defined by altimetry (2,041 observations) and 
to the main variables Total Invoiced Water (TI) and Total 
Supplied Water (TS). Both these variables refer to water 
volumes and the respondents are requested to provide them 
in thousands of cubic meters. The scatter plot on log-scale 
of per capita water invoiced (WI) versus per capita water 
supplied (WS) (Figure 4) shows the presence of four clusters 
corresponding to unity measure error in one, both, or none 
of the target variables. This is probably due to the 
misunderstanding of some respondents that expressed water 
volumes in litres or in cubic meters rather than thousands of 
cubic meters, as requested. As expected, the two most 
populated clusters are those corresponding to non-erroneous 
units and to units where both variables are in error. 
Nevertheless, we can note the presence of two rare clusters 
corresponding to observations where the unity measure 
error affects only TI or only TS respectively.  

In Table 5 a label is assigned to each group associated 
with a specific error pattern. For the sake of simplicity we 
introduce two flags ETS and ETI assuming value 1 or 0, 

depending on whether the corresponding variables are 
affected by the unity measure error or not, respectively.  

In order to identify and correct the unity measure error 
we apply the procedure described in sections 2 and 3. We 
classify each observation according to a specific error 
pattern, i.e., we assign each unit to one of the clusters ,tG  
for .4...,,1=t  The results are reported in Table 6.  

For each unit the atypicality index is also calculated and 
the threshold 005.0=α  is chosen in order to flag atypical 
units. According to this threshold, 71 observations are 
selected as atypical, marked by “crosses” in Figure 7. Once 
the values giâ  are computed according to Formula (3), a test 
assessing the normality assumption can be performed. 
Actually, following McLachlan and Basford (1988, Chapter 
2), the Anderson – Darling test on the uniformity of giâ  on 
each single estimated cluster is performed. The p – values are 
below 0.001 for the two largest clusters. Since the test is 
based on asymptotical approximations, we do not take into 
account the results on the other two rare populations. In 
Figure 5 we report the empirical sample quantiles versus the 
normal quantiles of the variables log(WI) and log(WS), 
focusing only on the subset of data classified as non-
erroneous. We notice that departure from normality is 
mainly due to heavy tails. Based on the results obtained in 
section 4.1, where the method performed satisfactorily also 
in non-gaussian setting, we are confident about the good 
performance of the mixture approach on the survey data. 
This expected behaviour is confirmed by the application 
results showed in the following. 
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Figure 4. Scatter plot of log(WS) and log(WI). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Normal qq – plot of log(WS) and log(WI). 

 

 

Table 5 
Error Patterns and Error Labels 

 

Error pattern 
ETS  = 0 
ETI  = 0 

ETS = 0 
ETI  = 1 

ETS = 1 
ETI  = 0 

ETS = 1 
ETI  = 1 

Cluster label G1 G2 G3 G4 
 
 

Table 6 
Number of Units Assigned to Each Cluster 

 

Cluster label G1 G2 G3 G4 
N. of units 1,800 16 10 215 
% 88.2 0.8 0.5 10.5 

 

 

In the remaining part of this section, it is shown how the 
posterior probabilities can be used to prioritise units to be 
reviewed which are likely to provide the greatest editing 
benefit, taking into account the potential impact of the 
clerical editing on the estimates. To this aim, note that a 
wrong classification of an observation causes that the final 
values of at least one variable differ from the corresponding 
true values by a multiplicative factor. These discrepancies 
can seriously affect the accuracy of the estimates leading to 
a strong bias. In order to select the potentially erroneous 
units that most likely have a strong impact on the target 
estimates, we follow the selective editing approach. Let 

21, XX  denote the variables TS, TI respectively. For each 
unit ,...,,1, niui =  and for each variable ,2,1, =jX j  let 
us define: 
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ijX  : data free of systematic error; 
 

ijY  : observed data; 
 

ij
X
~

 : data  after the treatment of systematic error based 
on the classification through mixture model (i.e., 

ijij YX =~
 or 000,1/~

ijij YX =  depending on the 
cluster the unit iu  is assigned to). 

 
Let us suppose that the target estimates refer to population 
totals .)( ijij XXT ∑=  Further, denote by )(⋅ξE  the 
expectation over the distribution of the random variable jX  
conditional on the observed data ijY  and the data after 
correction .

~
ijX  Then, from the inequality 

≤−∑ |)
~

(| ξ ijiji XE X |
~

| ijiji XXE −∑ ξ  it follows that the 
quantity on the right hand side can be viewed as an upper 
bound for the expected bias of the total estimate for the 
variable jX  based on the corrected values .

~
ijX  The last 

consideration suggests a method for selecting the most 
“influential” units with respect to the estimate :)( jXT  in 
order to guarantee the requested level of accuracy and to 
minimise costs due to manual check, we define a local score 
function ,)(ˆ/)|

~
|( jijijij XTXXES −= ξ  where )(ˆ

jXT  is 
a reference estimate for ),( jXT  for instance the estimate 
from a previous survey, or a robust estimate. In our case, in 
order to robustify the preliminary estimate we first exclude 
from the data the atypical observations, then compute the 
mean value on this subset, and then multiply it by the total 
number of units.  

The local score ijS  measures the impact of the potential 
unity measure error associated to the unit iu  on the target 
estimate ).( jXT  Then, units can be sorted by their score 

ijS  and, starting from the highest values, the first units can 
be selected until the sum of the remaining ijS  values is 
lower than a predefined threshold.  

If both the variables TS and TI are considered 
simultaneously, a global score ,iS  for ,...,,1 ni =  can be 
obtained by suitably combining the local score functions 

.2,1, =jSij  Possible choices are ,2)( 21 iii SSS +=  or 
.max 2,1 ijji SS ==  The latter function, for instance, ensures 

that the impact of the potential unity measure error 
associated with iu  on each estimate is not greater than .iS  

In order to compute the scores ijS  the conditional 
expected value |

~
| ijij XXE −ξ  is to be estimated for each 

unit ,...,,1, niui =  and for each variable jX  for .2,1=j  
This can be easily done through the posterior probabilities. 
For instance, suppose that the unit iu  has been assigned to 
the cluster .2G  This means that, for this unit, the observed 
value of TS )( 1iY  has been considered correct, while the 
observed value of TI )( 2iY  has been flagged as affected by 
unity measure error (i.e., multiplied by 1,000). The 
correction consists of dividing by 1,000 the observed value 

of TI, i.e. ).000,1/
~

,
~

( 2211 iiii YXYX ==  The conditional 
expected value |

~
| ijij XXE −ξ  can be computed as follows: 
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where 
gi
τ̂  is the estimated probability that unit iu  belongs 

to cluster .gG  In a similar manner the score functions can 
be calculated for all the units. 

In practice, in our application we sort the units by their 
global score ijji SS 2,1max, =  (ascending order). Then we 
exclude from clerical review all the first observations such 
that their cumulative sum of iS  is below ,δ  where δ  is a 
specified tolerance level for the impact on the estimates due 
to errors remaining in data. In Figure 6 the behaviour of the 
cumulative sum of ,, )( kikii SSS ≤∑=  is shown for the first 
most critical 10 observations. We remark that for the sake of 
clarity we have not reported all the observations because for 
most of them )(iS  is close to zero causing an unreadable 
picture for their different magnitude. Note that a residual 
relative error less than 001.0=δ  is expected by selecting 
only the first two units (drawn with crosses).  

In Figure 7 all the units selected because of their 
atypicality (71) and/or the relative impact on estimates of 
their potential errors (2) are shown: crosses correspond to 
observations that are critical for atypicality, squares indicate 
the other two types of critical units.  

A comparison with the results obtained by the official 
procedure is made. Out of the 1,968 units not selected for 
clerical review, 1,911 observations are error free or affected 
by unity measure error only. For all of them the 
classification of the mixture model is correct. Out of the 
remaining 57 units characterised by other error typologies, 
45 are classified as non-affected by the unity measure error, 
while 12 as units with the 1,000 error in both the variables. 
This last misclassification can be explained by the presence 
of another systematic error (times 100, 10,000 factors) that 
is not taken into account in the model used for this example. 
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Figure 6. Plot of the cumulative score )(iS  for the first  

most critical 10 observations. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Scatter plot of log(WS) vs log(WI). Crosses indicate 
critical units for atypicality, squares mark critical units 
for the impact of their potential error.  

A further comparison is about the estimate of the totals. 
Under the hypothesis that the values selected for a clerical 
review are correctly restored, the relative differences 
between the “true” total values according to the official 
procedure )( jXT  and the model estimate )(ˆ

jXT  as 
,)()|)()(ˆ|()( jjjj XTXTXTXB −=  for 2,1=j  are 

=)( 1XB 005.0  and .002.0)( 2 =XB  These values are not 
directly comparable with the tolerance level ,001.0=δ  in 
fact this threshold relates only to impact of the remaining 
unity measure errors, while )( jXB  is also affected by other 

kind of errors. Thus, for a more direct comparison, we 
replace for these units the wrong values with the “true” ones 
obtaining .0)()( 21 == XBXB  This particularly high 
performance of the model is justified by the low degree of 
overlapping of the clusters as clear in Figure 7. 

 
5. Final Remarks and Further Research  

In this paper we propose a finite mixture model to deal 
with a particular type of systematic error that frequently 
affects numerical continuous survey data: the unity measure 
error times a constant factor. The proposed approach has the 
advantages, with respect to the traditional ones, to formally 
state the problem in a multivariate context, to be easily 
implemented in generalised software, and to naturally 
provide useful diagnostics for prioritising doubtful units 
possibly containing influential errors. The latter character-
istic is particularly important when the situation is critical, 
i.e., when different error patterns overlap each other or in 
other words when unity measure errors are among plausible 
observations. In these circumstances a clerical review is 
needed. Hence, it is important to optimise the selection of 
critical observations in order to save time and costs. All 
these advantages are the natural consequence of the intro-
duction of a model-based technique. On the other hand, it is 
clear that the use of a model-based approach implies prob-
lems related to model assumptions. However, based on the 
experiments illustrated in the paper, it seems that also in 
cases of departure from the normality assumption, the 
proposed technique performs satisfactorily. Nevertheless, it 
is worth to mention that for extreme departure from normal-
ity, e.g., when the distribution is not unimodal, the method 
is expected to fail. This can happen in real situations when 
true data contain different clusters, for instance differences 
in men and women income might cause a bimodal 
distribution for the income itself. In some cases the problem 
could be overcome by stratifying data with respect to some 
explicative variables, e.g., sex in the previous example. An 
alternative approach to this specific problem could be based 
on modelling each cluster in turn as a Gaussian mixture, 
thus obtaining a “mixture of mixture models” (McLachlan 
and Peel 2000; Di Zio, Guarnera and Rocci 2004). 

Finally, a last concern is about the number of variables 
that can be treated simultaneously. Actually, the number of 
clusters and then the number of mixing parameters tπ can 
have an exponential growth with respect to the number of 
variables, making the parameter estimation a critical task. 
However it is worthwhile noting  that the number of 
parameters related to the mean vector and covariance matrix 
increases much slower, due to the constraints characterising 
our model.  
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Using Matched Substitutes to Improve Imputations for Geographically 
Linked Databases 

Wai Fung Chiu, Recai M. Yucel, Elaine Zanutto and Alan M. Zaslavsky 1 

Abstract 

When administrative records are geographically linked to census block groups, local-area characteristics from the census 
can be used as contextual variables, which may be useful supplements to variables that are not directly observable from the 
administrative records. Often databases contain records that have insufficient address information to permit geographical 
links with census block groups; the contextual variables for these records are therefore unobserved. We propose a new 
method that uses information from “matched cases” and multivariate regression models to create multiple imputations for 
the unobserved variables. Our method outperformed alternative methods in simulation evaluations using census data, and 
was applied to the dataset for a study on treatment patterns for colorectal cancer patients. 
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1. Introduction  
In a study on treatment patterns for colorectal cancer 

patients, income and education are desired variables for 
constructing statistical models of relevant scientific interest. 
Unfortunately, individual measurements for these variables 
are not directly observable from the cancer registry 
databases that are compiled from hospital records, which 
like many administrative databases contain primarily 
information required for administrative purposes. Instead, 
mean values of these variables for small geographical areas 
(census block groups or tracts) including the subject’s area 
of residence are used as regressors to estimate income and 
education effects. Analyses using such “contextual vari-
ables” are common in epidemiological and health services 
research (Krieger, Williams and Andmoss 1997), and often 
produce results broadly similar to those based on individual 
variables. If both individual and contextual variables were 
available, it might be possible to separate the effects of indi-
vidual characteristics and contexts; in a purely contextual 
analysis, these effects are confounded. Nonetheless, associa-
tions between contextual socioeconomic characteristics and 
quality of care would suggest an equity problem, regardless 
of whether such associations primarily reflect individual or 
community-level relationships. 

In the colorectal cancer treatment study, each contextual 
variable for a given patient record is assumed to be the 
variable’s census group (or tract) mean value obtained by 
geographically linking the record’s address to a census 
block group (or tract). A small but substantial percentage of 

patient records (about 3.3% or 1,696 records) have 
insufficient address information to permit links with census 
block groups, hence making the corresponding contextual 
variables unobservable. Such records will be called 
ungeocodable records, while records that can be linked to 
census block groups will be referred to as geocodable. To 
generate multiple imputations for the unobserved contextual 
variables, we propose a strategy that uses information from 
more than one “matched case” to help build parametric/ 
nonparametric imputation models. In particular, information 
from the matched cases accounts for small area effects in 
our imputation models, so that there is no need to explicitly 
model such effects. 

Rubin and Zanutto (2001) use the term “matched 
substitute” instead of “matched case”, and propose a 
parametric imputation model using only one matched 
substitute per record.  The analyses resulted from their 
model were compared to those given by other analytic 
methods in an extensive simulation study, but was not 
applied to real data. We extend Rubin and Zanutto’s method 
by (1) allowing use of information from more than one 
matched case per record and (2) using an empirical rather 
than a parametric distribution of residuals.  

This research was motivated by our need for multiple 
imputations for the partially observed variables in the study 
of treatment patterns for colorectal cancer patients. Ayanian, 
Zaslavsky, Fuchs, Guadagnoli, Creech, Cress, O’Connor, 
West, Allen, Wolf and Wright (2003) analyzed a dataset 
that included imputations generated by our method, 
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referring to Rubin and Zanutto (2001) and a preliminary 
version of this paper that appeared in a proceedings 
publication (Chiu, Yucel, Zanutto and Zaslavsky 2001). 
This paper is the first comprehensive publication of our 
methodology and the first published report that describes an 
application of Rubin and Zanutto’s method to real data. 

The organization for the rest of this paper is as follows.  
Section 2 summarizes Rubin and Zanutto’s method and 
gives a general description of our method. Section 3 outlines 
the application of our method to the colorectal cancer study. 
Section 4 illustrates in a simulation study the performance 
of our method relative to three other commonly-used 
nonresponse adjustment methods. 

 
2. Imputation Methodology  

This section will begin with a summary of Rubin and 
Zanutto’s method, followed by a general description of our 
method that includes a discussion on out-of-sample versus 
within-sample matching, the details of the modeling and 
multiply-imputing tasks, and an analysis of efficiency as a 
function of the number of matched cases used.  
2.1 Matching, Modeling and Multiply Imputing  

Rubin and Zanutto (2001) proposed a method called 
“matching, modeling, and multiply imputing” (MMM) that 
uses matched substitutes to help generate multiple impu-
tations for nonrespondents in sample surveys, without 
requiring that substitutes be perfect replacements for the 
nonrespondents. Matched substitutes are responding survey 
units chosen to match the nonrespondents on one or more 
“matching covariates” – variables that are available prior to 
the survey and are convenient for matching but not neces-
sarily for modeling. As a result of matching, nonrespondents 
and their substitutes may share similar values in their “field 
covariates” – variables that are only implicitly observed and 
are therefore not available for data analysis. “Modeling 
covariates” are variables that can be included in statistical 
models to adjust for observed differences between non-
respondents and their substitutes, but that may not be 
available or used for matching. The essence of MMM is that 
both matching and modeling covariates are used, in the 
context of proper multiple imputation (Little and Rubin 
1987, pages 258 – 259 and references therein). 

Consider a simple example where age and address 
covariates are available for all units in a population prior to 
sampling. Finding substitutes matching nonrespondents 
with respect to both age and address may be difficult. An 
alternative is to match only on address (e.g., choosing a 
neighbor to be a substitute) and adjust for systematic age 

differences between nonrespondents and matched substi-
tutes through statistical modeling. If neighboring households 
were chosen as matched substitutes for nonresponding 
households, the substitutes and nonrespondents might have 
similar socioeconomic contexts (e.g., levels of crime, access 
to public transportation, etc.) even though these charac-
teristics might have not been recorded. In this example, 
address is a matching covariate, age is a modeling covariate, 
and the contextual socioeconomic characteristics are field 
covariates. 

In summary, MMM (i) chooses matched substitutes for 
nonrespondents and some respondents based on matching 
covariates, (ii) uses modeling covariates to fit a model 
estimating the systematic differences in responses between 
pairs of respondents and substitutes, (iii) multiply-imputes 
the unobserved values using the model in (ii) under the 
assumption that the same relationship holds between pairs 
of nonrespondents and substitutes, and (iv) discards all 
matched substitutes after imputation.  
2.2 Out-of-Sample Versus Within-Sample Matching  

Matched cases may be obtained from out-of-sample data 
or within-sample data. In the Rubin and Zanutto approach, 
matched substitutes are obtained from out-of-sample data 
after the missingness is detected. Their description empha-
sizes that the matched substitutes must be discarded after 
imputation since including such additional cases in infer-
ences would modify the sample design by adding extra 
cases in the “blocks” that contain unobserved data. Matched 
cases are considered within-sample data if they are obtained 
from the database that is available before imputing or even 
finding out which records in the database have unobserved 
variables. As far as the overall inferential goals are con-
cerned, these matched cases are not additional cases, but are 
part of the original data collection, and therefore will be 
included in scientific analyses. 

Assuming within-sample matching, we treat the un-
geocodable records as nonrespondents and the geocodable 
records as respondents. For each ungeocodable record, a 
given number of matched cases are randomly chosen from a 
pool of geocodable records within the same small geograph-
ical area (e.g., zip code, which is a postal delivery code 
usually representing an area served by a single main US 
post office). Similarly, the same number of matched cases 
are also chosen for each of the randomly sampled geo-
codable records (see Rubin and Zanutto (2001) for recom-
mendations on the size of such a sample relative to the total 
number of ungeocodable records in a given dataset). If more 
matched cases were needed than those are available in the 
same small area, the selection pool would be extended to the 
“nearest” geographical areas until the required number of 
matched cases was achieved. 



Survey Methodology, June 2005 67 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

All matched cases in the colorectal cancer study came 
from the same cancer database. In general, matched cases 
need not be drawn from the same population in which the 
nonrespondents and respondents originated. For example, 
matched cases for colorectal cancer records can be obtained 
from a general population of cancer patients, and a model 
can then be fitted to correct for systematic differences. Note 
that, with matched cases from a more similar population, 
stronger models can be built with more covariates. In our 
example, since we used other patients with the same cancer 
type, relationships to treatment process and outcome 
variables are likely to be consistent.  
2.3 Modeling and Multiply-imputing  

A simple example of our method is given here to convey 
the basic idea; in practice, more complex models may often 
be required. Suppose the following relationship holds in the 
population, 

,iki
T
ikiky ε+δ+= βx  (1) 

where i  indexes small geographical area, k  indexes unit 
within area, and iky  and ikx  are respectively the response 
and the characteristics of the thk  unit in geographical area 
.i  This model includes a regression prediction ,βT

ikx  a 
small-area effect ,iδ  and a unit-specific residual .ikε  We 
assume that ikε  follows some distribution εF  with mean 
zero and variance .2σ  Note that this development 
generalizes directly to multivariate .iky  

We extend Rubin and Zanutto’s method to allow more 
than one match in the same small area, because having 
several matches in small areas is possible (often convenient 
and inexpensive) in census data or in large administrative 
datasets. Rubin and Zanutto’s assumption of a single match 
is appropriate to survey data collection that requires 
additional field work for each match. 

The regression coefficients in equation (1) are estimated 
using any collection of observations with two or more 
records per small area to fit the regression model in which 
the iδ  are treated as fixed effects. With only two cases per 
area, β  can instead be estimated from the within-area 
regression 

,)()()( 212121 ii
T
i

T
iii yy ε−ε+−=− βxx  (2) 

where the small area effect drops out. The residuals from 
this regression have a symmetrical distribution with vari-
ance .2 2σ  

Assuming for the moment that we have a draw from the 
posterior distribution of ,β  we carry out the rest of this 
analysis conditional on that draw. Now suppose that we are 
interested in imputing for a new unit (indexed as 0=k ) in 
area ,i  and that we have obtained 1≥iK  matched cases for 
this unit. Denote the outcomes of these matched cases by 

the vector T
iKii i

yy )...,,( 1=y  and the corresponding 
characteristics by the matrix .)...,,( 1

T
iKii i

xxX =  With a 
flat prior for ,iδ  the posterior distribution for β,,| iii Xyδ  
has mean 

βT
iiy x−  (3) 

and variance ,/2
iKσ  where ∑ == iK

k iiki Kyy 1 /  and =ix  
∑ =

iK
k ii K1 ./x  Hence, the predictive distribution for 

β,,,| 00 iiiiy xXy  has mean 

β)( 0
T
i

T
iiy xx −+  (4) 

and variance 2)/11( σ+ iK  which is the sum of the 
predictive variance under the model conditional on all 
parameters and the posterior variance of .iδ  These 
statements assume that the mean of the residuals is a 
sufficient statistic for .iδ  This assumption is true for the 
normal distribution (or natural observations of any 
exponential family distribution); we assume it is at least 
approximately true for ,εF  so that we can base inferences 
on that mean. Note that use of a flat prior leads to 
overdispersed draws relative to what would be obtained 
with a proper prior from a hierarchical model, but is much 
simpler (especially in analyses with the multivariate 
outcomes). 

An imputation for 0iy  can be generated by first drawing 
2σ  from its posterior distribution, second drawing β  

conditional on the draw of ,2σ  third computing the 
predictive mean in equation (4) from the draw of ,β  and 
finally adding a residual of variance 2)/11( σ+ iK  to the 
predictive mean. In simple surveys with β  estimated by 
equation (2), the posterior distribution of β  (conditional on 

2σ  and the data) under a flat prior is approximately 
))(,ˆ(N 21 σ−XX Tβ  where the thi  row of X  is 

.)( 21
T
i

T
i xx −  In more complex designs, the posterior 

distribution of β  can be approximated using the point 
estimate and sampling variance calculated under the 
associated design. 

The residual can be obtained through modeling or 
sampling. Modeling involves estimating 2σ  using the 
residual variance of equation (1) and drawing the residual 
under univariate normality (see Rubin and Zanutto (2001) 
for the special case where only one matched case was ob-
tained for each record) or some other parametric distri-
bution. We refer to such an approach as parametric MMM 
(PMMM). An alternative is to randomly sample a 
regression residual from any area j  whose residuals might 
be regarded as exchangeable with those from area i  (Rubin 
1987 pages 166 – 168). See also Lessler and Kalsbeek 
(1992, section 8.2.2.4), Kalton and Kasprzyk (1986), and 
Kalton (1983). Since the variance of such a residual is 

,]/)1([ 2σ− jj KK  we multiply the randomly-sampled 
residual by )]1/([]/)1([ −+ jjii KKKK  to obtain the 
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correct predictive variance. We call this approach 
nonparametric MMM (NpMMM).  

In summary, our method consists of three basic steps: 
 

1. Draw matched cases for the ungeocodable records 
and for some randomly sampled geocodable records; 
 

2. Use the sampled geocodable records and their 
matched cases to fit equation (1) where the iδ  are 
treated as fixed effects, and save the residuals; 
 

3. Repeat the following for m  (usually 5 to 10) times: 
 

(a) Draw 2σ  from its posterior distribution, then β  
conditional on the draw of 2σ ; 
 

(b) For each ungeocodable record, treat the sum of 
the vector of predictive means obtained from 
equation (4) and a vector of residuals drawn 
using either PMMM or NpMMM as a realization 
of the unobserved vector of contextual variables.  

2.4 Efficiency  
The efficiency of an imputation is related to the number 

of matched cases used. Let KV  be the predictive variance of 
an imputation model where K  matched cases per record are 
used. For the model in section 2.3, .)/11( 2σ+= KVK  
Define efficiency as 

,
1)/11( 2

2

+
=

σ+
σ== ∞

K

K

KV

V
E

k
K  (5) 

for any positive integer .K  Efficiency increases as the 
number of matched cases per record increases; for example, 

,91.0,8.0,67.0 1042 ≈=≈ EEE  and .95.020 ≈E  
Theoretically each record can have as many matched 

cases as permitted by available resources. In practice, the 
number of matched cases used often depends on the cost of 
matched cases and the cost of computation involved in 
model fitting. In our method, the cost of computation for 
each added matched case per record is negligible. In the 
colorectal cancer study, while the matched cases were free, 
the ability to do the imputation based on a limited number of 
matched cases was crucial because confidentiality restrict-
tions prevented investigators from using the entire dataset in 
modeling with zip codes (even in a coded form) attached. 
For illustrative purposes, we will use two matched cases per 
record in subsequent analyses.  

3. Application: The Colorectal Cancer Study  
The colorectal cancer database has a total of 50,740 

patient records, of which approximately 3.3% are un-
geocodable. Among these, about half have P.O. box 
addresses (often in a rural area), and the rest are mistyped 

addresses or addresses from newly developed areas that are 
not in address databases. In a study of factors predicting 
provision of chemotherapy for colorectal cancer patients, 
investigators believed that the following three census block-
group means would be useful contextual variables: 
 

1Y  = median household income, 
 

2Y  = percent with no high school diploma, and 
 

3Y  = percent below poverty level. 
 

These variables were observed in geocodable records but 
unobserved in ungeocodable records. The task was to 
generate multiple imputations for the unobserved census 
variables using the methods in section 2. 

Each of the block-group means was reported in the 
census data for six race/ethnic groups, and the scientific 
analyses used only the set of block-group means 
corresponding to the race/ethnicity of each patient. For 
imputations used in Ayanian et  al. (2003), we therefore 
fitted six separate models to impute all )36(18 ×  values for 
each ungeocodable patient and then selected the three 
variables pertinent to each patient; joint distributions for 
different race/ethnic groups were not important because 
each imputation only used values for a single group. An 
alternative would have been to use race as a matching 
variable, but this would have forced us to seek some 
matches at a much greater distance geographically, diluting 
the predictive value of the geographical match. 

For expository purposes, we assume henceforth that only 
the block-group mean corresponding to the race of each 
respondent is available, but not the means corresponding to 
the other five races that are available simultaneously in the 
census data. This is more typical of data that would be 
collected directly from the respondent, where the race 
variable itself (as a modeling variable) is quite predictive 
because income data for people of different races reflect 
differences in income associated with race.  
3.1 Matching and the Dataset  

The addresses of over 90% of ungeocodable records 
have zip codes. Zip code was therefore chosen as a 
matching covariate. A simple diagnostic for its usefulness 
appears in section 3.2. The numerical sequence of zip codes 
does not always correspond to neighborhood distance 
relationships. For example, Cambridge, Massachusetts has a 
02138 post office that also uses the 02238 zip code for 
mailboxes, and in nearby Boston there is a 02215 zip code 
that was carved out of the 02115 area. Instead of using the 
numerical sequence of zip codes, the distances between zip 
codes were computed based on latitudes and longitudes of 
their main post offices, under the assumption that two zip 
codes were closest to each other if their main post offices 
were closest to each other. 
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The colorectal cancer database has 1,696 ungeocodable 
records. The same number )696,1( * =n  of geocodable 
records was randomly selected from the same database. For 
each of these 3,392 records, two matched geocodable cases 
were randomly chosen from its own zip code or (if 
necessary) neighboring zip codes. This created a dataset 
with 176,103392,3 =×  records. Note that *n  was a 
convenient choice, because the data were free. In general, 
the choice of *n  could affect both the total cost and the 
precision of the estimates. Both the randomly selected 
geocodable records and the matched cases were within-
sample data and hence were retained in the analyses for 
Ayanian et al. (2003). We asked the cancer registry for 
these cases only because for confidentiality purposes we 
could not do the matching ourselves with the data (for the 
same cases) that we had in hand. 

The modeling covariates used in the imputation model 
were the eight administrative-record variables: age, sex, 
race, marital status, cancer stage, chemotherapy treatment, 
cancer type and radiotherapy treatment, and category of 
treating hospital’s American College of Surgeons accred-
itation as of 1999 (ACOS99). These variables are observed 
for all 10,176 records included in the imputation model. 
(Some of these variables are predictors and some are 
outcomes in the scientific models of the main analyses, but 
the distinction is irrelevant for imputation.) The census 
mean values 21, YY  and 3Y  are observed in geocodable 
records, but not in ungeocodable records. These variables 
were treated as outcome variables of the imputation model 
in section 2.3. The data structure is represented by Table 1. 
 

Table 1 
Structure of Data Used in Imputation for the  

Colorectal Cancer Study 
 

Eight Modeling 
Covariates 

Census 
Variables Data* 

Age Sex … ACOS99 1Y  2Y  3Y  

Ungeocodable √ √ … √ ? ? ? 
First Match √ √ … √ √ √ √ 
Second Match √ √ … √ √ √ √ 

Geocodable √ √ … √ √ √ √ 
First Match √ √ … √ √ √ √ 
Second Match √ √ … √ √ √ √ 

 

* There were 1,696 records in each of the six types  
 of data. 
√ = observed ? = unobserved 
 

Before we fitted the model, the percentage outcomes 2y  
and 3y  were transformed using the scaled-logit function: 

,
)/()(1

)/()(
log ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−

−−
abay

abay
 (6) 

with 5.0−=a  and 5.100=b  so that after imputations the 
inverse transformation with rounding to the nearest integer 

would yield imputed values between 0 and 100 inclusive 
(Schafer 1999). Similarly, a log-transformation was applied 
to the income outcome 1y  so that the imputed incomes 
would be nonnegative. Note that the distributions of the 
transformed variables are closer to normality than they are 
on the original scale (Schafer 1997). To keep notation 
simple, we redefine 21, yy  and 3y  as their transformed 
versions.  
3.2 Preliminary Diagnostics  

A simple diagnostic test for the usefulness of the 
matching covariates is to compare the adjusted 2R  for the 
regression models predicting the three census variables with 
only the modeling covariates, the models with only the 
matching covariates, and the models with both. In this 
application, zip code was the only matching covariate. 
There were 1,133 distinct zip codes (hence 1,132 dummy 
variables) in the 8,480 fully observed records (the 
geocodable records and all first and second matches). Table 
2 shows the adjusted 2R  for models with only the eight 
modeling covariates, models with only zip code, and models 
with both modeling covariates and zip code. The adjusted 

2R  for models with both modeling covariates and zip code 
are higher than the corresponding ones for models with only 
one of the two covariate types. Our imputation procedure 
uses information from both matching and modeling 
covariates and thus can be expected to work better than 
procedures using only the matching or the modeling 
covariates (as shown by the simulation study in section 4). 
Although the contribution of the modeling covariates to 2R  
is relatively modest, their inclusion is important for 
removing systematic biases and properly representing 
relationships that might be important in the scientific 
models. 

Table 2 
Adjusted 2R  for Alternative Regression Models 

 

 Only 
Modeling 
Covariates 

Only Matching 
Covariate  

(Zip Code) 

Both Modeling 
and Matching 

Covariates 
Median household income (INC) 0.091 0.453 0.496 
Percent with no high school 
diploma (EDU) 0.115 0.452 0.503 
Percent below poverty level (POV) 0.047 0.327 0.343 
Model degrees of freedom(a) 26(b) 1,133 1,158 
Sample sizes 8,480 8,480 8,480 
Residual degrees of freedom 8,454 7,347 7,322 
 

(a) With intercept. 
 

(b) The modeling covariates are age, sex (2 levels), race (6 levels), 
marital status (6 levels), cancer stage (6 levels), chemotherapy 
treatment (2 levels), cancer type and radiotherapy treatment (3 
levels), and category of treating hospital’s American College 
of Surgeons accreditation as of 1999 (6 levels). 

 
To determine whether a multivariate model was needed, 

we fitted a multivariate-outcome regression model with both 
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modeling covariates and zip code. The estimated correla-
tions between the residuals were: ,194.012 −≈r  

,297.013 −≈r  and ,357.023 ≈r  where “variable 1” is 
median household income, “variable 2” is percent with no 
high school diploma, and “variable 3” is percent below 
poverty level. These estimates were significantly different 
from zero, which therefore indicated that multivariate 
versions of the methods in section 2.3 should be used to 
generate imputations.  
3.3 Multiple Imputation Results and Comparisons  

Imputations under NpMMM were used in the study of 
factors predicting provision of chemotherapy for colorectal 
cancer patients (Ayanian et al. 2003). Their model included 
three indicator variables for ranges of contextual income, 
together with 21 other variables representing patient and 
hospital characteristics. The multiple imputation analysis 
shows that the information loss due to missing information 
is always less than 0.1%, which is much smaller than the 
fraction of ungeocodable records (3.3%). As expected, the 
largest fractions of missing information appeared for the 
income variables. The scientific results in Ayanian et al. 
(2003) would not have changed dramatically if the 
incomplete cases had been dropped. In this type of research, 
however, every case is precious and expensive, and saving 
the 3.3% with missing data was a contribution to the study. 

For comparison, variances of parameters under the 
complete-case analysis were on the average 4.0% larger 
than those under multiple imputation analysis. Such 
percentage differences are close to the fraction of 
incomplete cases deleted for this analysis. When the 
imputations generated by our method were included in the 
scientific analysis, the precision of the estimate of the 
“rural” effect was dramatically improved (using only the 
complete cases led to 41.6% increase in variance), due to 
the concentration of ungeocodable records in rural areas 
(21.6% of rural records are ungeocodable, but only 3.1% of 
nonrural records are ungeocodable). 

 
4. A Simulation Study  

This simulation study compares performance of our new 
method with three other commonly-used nonresponse 
adjustment methods. The population of this study was the 
1,696 fully observed triples – the 1,696 geocodable records 
and the corresponding first and second matches (one row 
from each of the last three horizontal blocks in Table 1) – or 
5,088 observations. For simplicity, we assumed that the 
triples were from distinct zip codes (clusters), hence 

.696,1...,,2,1 == Ii  Each cluster i  contained three units 
,)3,2,1( =u  and the record of each unit consisted of iux  

(the covariates) and iuy  (the census variables). 

4.1 Simulated Data and Response Mechanism  
Assuming that the design was cluster sampling with 

sample size 800, we drew random samples of 800 clusters. 
For each random sample, about half of the 800 clusters were 
randomly selected to have an ungeocodable record in which 
the census variables were unobserved, with the probability 
of missingness depending on an individual’s race and on the 
mean income of the cluster (zip code). We simulated 
missingness under a multinomial logit model where the 
outcomes are: nothing unobserved 10 ,)1( iiw y=  unob-
served 21 ,)1( iiw y=  unobserved ,)1( 2 =iw  and 3iy  
unobserved .)1( 3 =iw  Specifically, for each ,...,,2,1 Ii =  
let 00 =iz  and 

)codezipinincomemean(

)Whiteisunit(

ic

iuIbaziu

×+
×+=

 
(7)

 

where .3,2,1=u  Then 

.3,2,1,0for

)(exp)(exp)1(Pr
3

0

=

== ∑
=

u

zzw
u

iuiuiu  
(8)

 

The results of this simulation study were based on 
datasets generated by the mechanism with 11,1 =−= ba  
and ,0003.0=c  which made about 17% of the units in a 
random sample ungeocodable, with probability of 
geocoding positively related to White race and higher block-
level income. The task was to use the random sample to 
estimate ,y  the mean values of the population (1,696 
clusters). 

The simulation conditions described in the preceding 
paragraphs were designed to give a stringent test of the 
procedure and alternatives by exaggerating the impact of 
unobserved data and making the missingness strongly 
related to characteristics both of the individual and of the 
area. We were not attempting to simulate the exact con-
ditions of the application in section 3 but rather to use an 
artificial population with similar distributions to those in the 
real population to illustrate the workings of our method and 
its competitors.  
4.2 Inferential Methods and Measures of 

Performance  
Preliminary results indicated that the performance of 

PMMM and NpMMM is similar; NpMMM is, however, 
simpler (especially in analyses with multivariate outcomes), 
because the method does not require explicit parametric 
modeling of the residual variance. Our simulations com-
pared performance of NpMMM (using two matched cases 
per record) with three other commonly-used nonresponse 
adjustment methods: 
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1. Complete-case Method (CCM) 
The population means are estimated from all geo-
codable units of a random sample. 

 

2. Substitute Single Imputation (SSI) 
This is the traditional use of substitutes. The un-
observed census variables of each ungeocodable unit 
are replaced by the values of the census variables of a 
randomly selected unit from the same cluster. The 
resulting sample is treated as if there had been no 
ungeocodable unit; all 800 clusters in such a sample 
are used for estimating the population means.  

 

3. Multivariate Normal Multiple Imputation 
(MNMI) 
This method uses only one randomly selected unit 
from each of the fully observed clusters in a random 
sample to fit the multivariate normal linear regression 

,),(N~ 0 ΣBβ T
i

TT
i xy +  

with a noninformative prior on the parameters. The 
model is then used to create m  sets of multiple 
imputations for the unobserved census variables using 
a direct multivariate generalization of the algorithm 
given by Rubin (1987, page 167). 

 

Note that CCM uses neither matching nor modeling 
covariates, SSI uses only the matching covariate (zip code), 
MNMI uses only the modeling covariates, and NpMMM 
uses both the matching covariate and the modeling 
covariates. 

The CCM and SSI data are analyzed by the usual 
complete-data method which estimates the population mean 
from the data with the appropriate estimator for cluster 
sampling from a finite population, including the finite 
population correction (Cochran 1977, Chapters 9 – 10). Both 
MNMI and NpMMM produce m  sets of complete data, 
each of which is analyzed by the same complete-data 
method used for the CCM and SSI data; the m  sets of point 
and variance estimates are then combined using the multiple 
imputation combination rule (Rubin 1987; Schafer 1997, 
pages 108 – 110). 

For each simulation ,}...,,2,1{ Tt ∈  we denote the 
point estimates from the four methods by ),(CC ty  

),(),( MNSS tt yy  and ),(Np ty  and the means of these 
quantities across simulations are written as ,CCy  

,, MNSS yy  and .Npy  Performance evaluation of the four 
nonresponse adjustment methods will be based on three 
measures: 
 

1. Percent reduction in the average bias of an 
estimator relative to the average bias of the CCM 
estimator. Denote the average bias of an estimator by 

.Eb  Then  
,E yyb −= E  

where .}NpMN,SS,CC,{∈E  We define the 
percent reduction in the average bias of an estimator 
relative to the average bias of the CCM estimator as  

,
||

||||
),(

CC

ECC
CCE b

bb
bbR

−
=  

where Eb  is an element of Eb  and CCb  is the corre-
sponding element in .CCb  By definition, ),( CCCC bbR  
is zero.  

2. Estimated coverage of the nominal 95% confidence 
intervals for .y  Intervals produced by the CCM or 
SSI estimates were constructed under appropriate 

ons.distributi−t  For intervals associated with the 
MNMI or NpMMM estimates, we followed the 
procedure outlined in Schafer (1997, pages 109 – 110) 
and replaced the degrees of freedom v  with the 
updated version of Barnard and Rubin (1999).  

3. Estimated fraction of missing information about 
.y  For each of MNMI and NpMMM, we computed 
,λ̂  an estimate of the fraction of missing information 

about y  (see Barnard and Rubin (1999) for the most 
recent expression).  

4.3 Results  
The simulation procedure was implemented 2,000 times, 

and 10=m  was used for MNMI and NpMMM. The mean 
values of the census variables in the population were 

.)55.9,65.21,642,40( T=y  The average bias of the CCM 
estimator was .)79.1,97.3,405,5(CCM

T−−−=b  Other 
results are summarized in Table 3. NpMMM achieved large 
percent reductions in relative average bias (95.0% to 
99.5%). SSI reduced biases more than MNMI, because the 
matching covariate (zip code) was much more informative 
than the set of modeling covariates (section 3.2). Since the 
response mechanism was nonignorable (the response 
probabilities depended partly on income), the poor 
performance of MNMI, which did not use the geographical 
information to help predict income, was expected. Note that 
MNMI is biased, and the bias is large enough so that with 
the sample size considered in this paper the confidence 
intervals never covered the hypothetical population values. 

Under MNMI and NpMMM, the percent of missing 
information was much less than the average percent of 
unobserved data. The percent of missing information was 
smaller under NpMMM than under MNMI. Only NpMMM 
produced well calibrated intervals with correct coverage. In 
summary, NpMMM combines the best features of the other 
two methods – close-to-nominal coverage and less missing 
information. 
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Table 3 
Simulation Results(a): Bias Reduction, Coverage, and Fraction of 

Missing Information 
 

Method Measure Mean 
NpMMM MNMI SSI 

INC 99.5 44.6 95.2 
EDU 95.0 40.6 83.7 

Percent bias 
Reduction 

)b(
CCM ),(100 bbR E  POV 96.8 32.6 80.3 

     

INC 95.1 0.00 89.8 
EDU 94.8 0.00 65.7 

Estimated 
Coverage of the 
95% CIs(c) POV 95.2 0.00 66.0 
     

INC 1.00 9.92  
EDU 0.05 0.07  

×100 Estimated 
fraction of missing 
information )d(λ̂  POV 0.07 0.08  
 

(a) Based on 2,000 replications and .10=m  
 

(b) By definition, .0),(100 CCMCCM =bbR  
 

(c)  Results for the CCM estimates were all zeros. 
 

(d) The average percent of unobserved data was approximately 17%.  
5. Conclusion  

This work extends Rubin and Zanutto (2001) in two 
respects. First, our method allows more than one matched 
case per record. We show theoretically that the efficiency of 
an imputation increases as the number of matched cases per 
record increases. When the cost of matched cases is rela-
tively low, our method offers an option where information 
of more than one matched case per record is used to help fit 
imputation models at a negligible computational expense. 
Second, NpMMM does not require explicit parametric 
modeling of residual variance(s), hence simplifying the 
modeling task (especially for analyses with multivariate 
outcomes). This nonparametric approach makes it feasible 
to apply our method to datasets with complex model 
structures. In a simulation study, NpMMM estimates 
achieved substantial bias reductions, and NpMMM 
produced confidence intervals with correct coverage. 

Although we have focused on geographically-based 
matching to complete unobserved geographically-linked 
variables, the procedures described in this paper can be 
generalized to other matching variables. For example, to 
impute clinical variables, it might be more appropriate to 
match to another patient in the same hospital, if clinical 
characteristics and therapies are likely to be more strongly 
associated with the hospital than with the geographic 
location of the patient’s residence. 
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Hierarchical Bayesian Nonignorable Nonresponse Regression 
Models for Small Areas: An Application to the NHANES Data 

Balgobin Nandram and Jai Won Choi 1 

Abstract 

We use hierarchical Bayesian models to analyze body mass index (BMI) data of children and adolescents with nonignorable 
nonresponse from the Third National Health and Nutrition Examination Survey (NHANES III). Our objective is to predict 
the finite population mean BMI and the proportion of respondents for domains formed by age, race and sex (covariates in 
the regression models) in each of thirty five large counties, accounting for the nonrespondents. Markov chain Monte Carlo 
methods are used to fit the models (two selection and two pattern mixture) to the NHANES III BMI data. Using a deviance 
measure and a cross-validation study, we show that the nonignorable selection model is the best among the four models. We 
also show that inference about BMI is not too sensitive to the model choice. An improvement is obtained by including a 
spline regression into the selection model to reflect changes in the relationship between BMI and age. 
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regression model. 
 
 

 

1. Introduction  
 

 

The National Health and Nutrition Examination Survey 
(NHANES III) is one of the surveys used by the National 
Center for Health Statistics (NCHS) to assess the health of 
the U.S. population. One of the variables in this survey is 
body mass index (BMI), and the World Health Organization 
has used BMI to define overweight and obesity. Under 
ignorability estimators from the NHANES III data are 
biased because there are many nonrespondents, and the 
main issue we address here is that nonresponse should not 
be ignored because respondents and nonrespondents may 
differ. The purpose of this work is to predict the finite 
population mean BMI for children and adolescents, post-
stratified by county for each domain formed by age, race 
and sex and to investigate what adjustment needs to be 
made for nonignorable nonresponse. Our approach is to fit 
several hierarchical Bayesian models to accommodate the 
nonresponse mechanism.  

Recently, several articles have been written about over-
weight and obesity. In outlining the first national plan of 
action for overweight and obesity, the Surgeon General 
called for sweeping changes in schools, restaurants, 
workplaces and communities to help combat the growing 
epidemic of Americans who are overweight or obese. He 
said that the obesity report “Is not about esthetics and it’s 
not about appearances. We’re talking about health.” As 
noted by Squires (2001) “Health care costs for overweight 
and obesity total an estimated $117 billion annually.” 
Overweight children often become overweight in adulthood, 

and overweight in adulthood is a health risk (Wright, Parker, 
Lamont and Craft 2001). In a very interesting article, using 
NHANES data Ogden, Flegal, Carroll and Johnson (2002) 
describe the most recent national estimates of the prevalence 
and trends in overweight among U.S. children and ado-
lescents. Based on a limited analysis they conclude “The 
prevalence of overweight among children in the United 
States is continuing to increase especially among Mexican-
American and non-Hispanic black adolescents.” Several 
disorders have been linked to overweight in childhood. A 
potential increase in type 2 diabetes mellitus is related to the 
increase in overweight among children (Fagot-Campagna 
2000); so are cardiovascular risk factor, high cholesterol 
levels, and abnormal glucose levels (Dietz 1998). Thus, it 
would be helpful to study the BMIs for children and 
adolescents using methods that can provide accurate 
adjustment for nonresponse and better measure of precision.  

Letting x denote covariates and y the response variable, 
Rubin (1987) and Little and Rubin (1987) describe three 
types of missing-data mechanism. These types differ 
according to whether the probability of response (a) is 
independent of x and y (b) depends on x but not on y and (c) 
depends on the y and possibly x. The missing data are 
missing completely at random (MCAR) in (a), missing at 
random (MAR) in (b) and one may say that the data are 
missing not at random (MNAR) in (c). Models for MCAR 
and MAR missing-data mechanisms are called ignorable if 
the parameters of the dependent variable and the response 
are distinct (Rubin 1976). Models for MNAR missing-data 
mechanisms are called nonignorable. 
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Nonresponse models can be classified very broadly into 
selection and pattern mixture models (e.g., see Little and 
Rubin 1987). Let ][ y  and ][r  denote respectively the 
density function of the response variable y, and the response 
indicator ,r  with obvious notations for the joint and 
conditional densities. Then the selection model specifies 
that ][]|[],[ yyrry =  and the pattern mixture model 
specifies ].[]|[],[ rryry =  The selection approach was 
developed to study sample selection problems (e.g., 
Heckman 1976 and Olson 1980). While the two models 
have the same joint density, in practice the components 

]|[ yr  and ][ y  for the selection model, and ]|[ ry  and ][r  
for the pattern mixture model are specified. Thus, these 
models may differ. 

Thus, we use two nonignorable nonresponse models, a 
selection model and a pattern mixture model, to analyze the 
NHANES III data. Each model is used in the hierarchical 
Bayesian frame work for our nonignorable nonresponse 
problem, and to study sensitivity to model choice the results 
are compared. In the selection model, the response 
propensity is related to BMI only, and then the model on 
BMI has a linear model on age, race, sex and the interaction 
of race and sex. In the pattern mixture model, the propensity 
to respond is related to age, race and sex (not BMI), and the 
model on BMI has two closely related linear forms on age, 
race, sex and the interaction of race and sex. These two 
models hold for the entire population. The BMI values of 
the nonrespondents and the nonsampled individuals are 
predicted from each model. We prefer the selection model 
because we can incorporate the structure in the NHANES 
III data, and based on statistical arguments this turns out to 
be true. 

Greenlees, Reece and Zieschang (1982) developed a 
normal-logistic regression model for imputing missing 
values when the probability of response depends upon the 
variable being imputed. They applied the model to data on 
wages and salary in the Current Population Survey (CPS) 
data on wages. David, Little, Samuel and Triest (1986) 
compared the CPS hot deck method and the normal-logistic 
regression model to wages and salary from a similar data 
set, and they found very little difference between the two 
methods. We note that the normal-logistic regression model 
is a nonignorable nonresponse selection model, but it does 
not account for clustering. To accommodate clustering 
within counties in the NHANES III data, it is natural to start 
with the normal-logistic model.  

Our hierarchical Bayesian selection model has a special 
structure. In NHANES III the propensity to respond 
increases with age (race and sex play a minor role), and 
doctors believe that obese individuals tend not to turn up for 
the physical examination. Thus, given the BMI values, like 
Greenlees et al. (1982) the response indicators follow a 

logistic regression model with the logarithm of the BMI 
values being the covariate. In turn, the logarithms of the 
BMI values are distributed according to a linear model in 
which the covariates are age, race and sex. This is the most 
important information we incorporate into the selection 
model. In addition, unlike Greenlees et al. (1982) our model 
includes clustering effects to account for heterogeneity 
among counties through the response indicators and the 
BMI values. Here each county has its own set of para-
meters, and there is a common distribution over these sets of 
parameters. This is also an important prior information we 
incorporate into our model, and it is one of the attractive 
features of the hierarchical Bayesian methodology.  

In the Bayesian approach, the main difficulty is formu-
lating the relationship between the respondents and non-
respondents. This latter issue can be accommodated within 
the selection approach through the normal-logistic structure. 
We also consider a hierarchical Bayes model within the 
pattern mixture approach. The pattern mixture model is a 
useful alternative to study sensitivity to the assumption in 
the selection model. To assess the assumption of non-
ignorable nonresponse, we also consider special cases of the 
selection and pattern mixture models to obtain two 
ignorable models. We found that a fifth model is required, 
in which we extend our selection model to a spline 
regression model to accommodate the dynamic relation 
between BMI and age. 

Nandram, Han and Choi (2002) developed a methodo-
logy to analyze the BMI data by age, race and sex when 
BMI is categorized into three intervals. This is a multi-
nomial extension of the nonresponse nonignorable analysis 
of Stasny (1991) for binary data. This methodology applies 
generally to any number of cells in several areas (counties in 
our application). Nandram and Choi (2002 a,b) consider 
further extensions of the work of Stasny for binary data (i.e., 
data from the National Health Interview Survey and the 
National crime survey). Here we do not categorize the BMI 
values, but rather we treat them in their own right as 
continuous values. The quantities of interest are the finite 
population mean BMI and the proportion of responding 
individuals in each domain formed by age, race, sex and 
county.  

The rest of the paper is organized as follows. In section 2, 
we briefly describe the NHANES III data. In section 3, we 
discuss the hierarchical Bayesian models for ignorable and 
nonignorable nonresponse. We also describe the model 
fitting, model selection and assessment which use predictive 
deviance and cross-validation. In section 4 we describe the 
analysis of NHANES III BMI data. Section 5 has a 
description of a spline regression model and comparisons. 
Finally, section 6 has concluding remarks about our 
approach. 
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2. NHANES III Data 
  

The sample design is a stratified multistage probability 
design which is representative of the total civilian non-
institutionalized population, 2 months of age or older, in the 
United States. The number of sampled individuals in each 
age-race-sex group is known for each county. The sample 
size by county, age, race and sex are relatively sparse. 
Further details of the NHANES III sample design are 
available (National Center for Health Statistics 1992, 1994).  

The NHANES III data collection consists of two parts: 
the first part is the sample selection and the interview of the 
members of a sampled household for their personal infor-
mation, and the second part is the examination of those 
interviewed at the mobile examination center (MEC). The 
health examination has information on physical examina-
tion, tests and measurements performed by technicians, and 
specimen collection.  

The sample was selected from households in 81 counties 
across the continental United States during the period from 
October 1988 through September 1994, but for confi-
dentiality reasons the final data of this study came from only 
the 35 largest counties (from 14 states) with population at 
least 500,000 for selected age categories by sex and race. In 
this paper, we analyze public use data from these 35 
counties; the demographic variables are age, race and sex, 
and the health indicator of our interest is body mass index 
(BMI), weight in kilograms divided by the square of height 
in meters (Kuczmarski, Carrol, Flegal and Troiano 1997). 
The World Health Organization (WHO Consultation of 
Obesity 2000) has designated an adult with BMI at least 30 
as obese; overweight refers to adults with BMI in the range 
[25, 30). For children 61−  years old and adolescents 7–19 
years old overweight and obesity are age-dependent. 

Nonresponse occurs in the interview and examination 
parts of the survey. The interview nonresponse arises from 
sampled persons who did not respond for the interview. 
Some of those who were already interviewed and included 
in the subsample for a health examination missed the 
examination at home or at the MEC, thereby missing all or 
part of the examinations. Here we do not consider the small 
number of individuals whose BMI values and covariates 
(age, race and sex) are missing (i.e., unit nonresponse). For 
simplicity and for all practical purposes it is reasonable to 
include all individuals with their covariates (i.e., complete 
data and item nonresponse) reported in our data analysis. 
Cohen and Duffy (2002) point out that “Health surveys are 
a good example, where it seems plausible that propensity to 
respond may be related to health.” We note also that for 
children and adolescents the observed nonresponse rate is 
about 24%. A partial reason for the nonresponse for young 
children is that the parents or older mothers were extremely 

protective and would not allow their children to leave home 
for a physical examination.  

We study the BMI data for four age classes (02 – 04, 
05 – 09, 10 – 14, 15 – 19 years). Recalling that there are 560 
(35 × 4 × 2 × 2) domains, the sample sizes on the average 
are very small per domain (e.g., 2,647/560 ≈ 4). Thus, there 
is a need to “borrow strength” from the domains. Also, the 
sample size is small relative to the finite population size 
(e.g., 100 × (2,647/6,653,738) = 0.04%). The prediction 
problem needs much computation. The observed data 
indicate that there is an increasing trend of BMI with age 
with slightly increasing variability. 

NHANES III data are adjusted by multiple stages of ratio 
weightings to be consistent with the population; see 
Mohadjar, Bell and Waksberg (1994). In this ratio-method, 
item nonresponse adjustment is done by ratio estimation 
within the same adjustment class and the distributions of the 
respondents and nonrespondents are assumed to be same. 
There is a need to consider methods for handling non-
ignorable nonresponse other than the ratio-adjustment 
method. Here we present a Bayesian method as a possible 
alternative for studying NHANES III nonresponse.  

Schafer, Ezzati-Rice, Johnson, Khare, Little and Rubin 
(1996) attempted a comprehensive multiple imputation 
project on the NHANES III data for many variables. The 
purpose was to impute the nonresponse data in order to 
provide several data sets for public use. As one of the 
limitations of the project they stated “the procedure used to 
create missingness corresponds to a purely ignorable 
mechanism; the simulation provides no information on the 
impact of possible deviations from ignorable nonresponse.” 
Another limitation is that the procedure did not include 
geographical clustering. Our purpose is different; we do not 
provide imputed public-use data. Unlike Schafer et al. 
(1996), we include clustering at the county level, although 
there may be a need to include clustering at the household 
level. For the complete data there are 6,440 households. Of 
these households 52.1% contributed one person to the 
sample, 22.5% two persons, and 21.4% at least three 
persons. We have calculated the correlation coefficient for 
the BMI values based on pairing the members within 
households (see Rao 1973, page 199). It is 0.19 which 
indicates that as a first approximation the clustering within 
households can be ignored.  

For our current application, inference is required for each 
age, race and sex domain within county. One standard small 
area estimation method is to identify each small area by a 
parameter, and then assume a common stochastic process 
over the 560 parameters. But because of the sparseness of 
the data, this is not desirable. Thus, our models are 
constructed at county level, and at the same time age, race 
and sex are represented as covariates. Inference is made for 
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each domain formed by crossing age, race and sex within 
county through our regression models. This is a key point in 
our analysis. 

 
3. Hierarchical Bayesian Methodology  

In this section we describe two Bayesian models for non-
ignorable nonresponse, and we deduce two additional 
ignorable models as special cases. We describe the model 
selection and assessment for the selected model (i.e., the 
selection model). 

There are data from 35=l  counties and each county has 

iN  (known) individuals. We assume a probability sample 
of in  individuals is taken from the ith county. Let s denote 
the set of sampled units and ns the set of nonsampled units. 
Let ijr  for lK,,2,1=i  and iNj ,,2,1 K=  be the response 
indicator ( 1=ijr  for respondents and 0=ijr  for non-
respondents) for the jth individual within the ith county in the 
population. Also, let ijx  be the logarithm of the BMI value. 
We found that the logarithm transformation gives a better 
representation, and we use it throughout. Note that ijr  and 

ijx  are all observed in the sample s but they are unknown in 
ns. Let ij

n
ji rr i∑ == 1  (i.e., ir  is the number of sampled 

individuals that responded in the ith county).  
For convenience, we express the BMI ijx  as ,,, 21 Kii xx  

iii inirir xxx ,,, 1 K+ in s and 
ii iNin xx ,,1 K+  in ns for county i. A 

key point that we note for what follows is that the ir  indi-
viduals are not necessarily random respondents from the in  
individuals randomly sampled. This is the nonresponse bias 
we need to address. It is clear that we need to predict the 
BMI value ijx  for (a) the nonrespondents in s and (b) the 
individuals in ns. Thus, for the finite population of iN  
individuals, we need a Bayesian predictive inference for  
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.,,1 lK=i  We develop our hierarchical Bayesian models 
to perform predictive inference for quantities like (1) and (2) 
depending on the domain.  

3.1 Competing Models  
Our models have two parts, one part for the response 

mechanism and the other part for the distribution of BMI. 
These two parts are connected to form a single model under 
nonignorable nonresponse or ignorable nonresponse. 

First, we describe the selection model. For Part 1 of this 
model the response depends on the BMI as follows  
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where )0(, θa  and )0(Δ  are to be specified. Note that the 
prior densities in (5) are all jointly independent. The 
assumption (3) is important because it relates the response 
propensity to the BMI values; doctors believe that over-
weight and obese individuals tend not to come to the MECs 
for the examinations. Clustering among the counties is 
accommodated by (4), and it is this assumption that permits 
a “borrowing of strength” among the counties. 

The second part of the model is about the BMI. The 
single most important predictor of BMI is age, with  race 
and sex playing  a relatively minor role. One possibility is to 
take the BMI values to be  

ijijijijijijij ax 10, α+α=μ∈+μ=  

where ija  denotes age and ~
iid2

3| σ∈ij Normal ),0( 2
3σ  for 

lK,,1=i  and .,,1 iNj K=  Also, there is a need to under-
stand the relationship between BMI and age, race and sex. 
We let 10 =ijz  for an intercept, 11 =ijz  for non-black and 

01 =ijz  for black, 12 =ijz  for male and 02 =ijz  for female, 

213 ijijij zzz =  for the interaction between race and sex, and 
we let ).,,,( 3210 ijijijijij zzzz=′z  Then, for a regression of 
BMI on age adjusting for race and sex, letting 

),,,( 040302011 αααα=′α  and ),,,,( 141312112 αααα=′α  
we take iijij v010 +′=α αz  and iijij v121 +′=α αz  to get 

ijiijiijij avv )()( 1201 +′++′=μ αα zz  

where iv0  and iv1  are random effects centered at zero with 
bivariate normal distribution shown below for each model.  

Thus, in Part 2 of the selection model, we assume  
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Again, clustering among the counties is accommodated 
by (7), and it is this assumption that permits a “borrowing of 
strength” among the counties. For this part of the model, we 
use the prior  
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where )0(, ka α  and 2,1,)0( =Δ kk  are to be specified. Note 
that the prior densities in (8) are all jointly independent.  

The nonignorable nonresponse pattern mixture model is 
presented in Appendix A. We have included race, sex and 
their interaction in the response part of the model, although 
these turn out to be unnecessary. The difference between the 
respondents and the nonrespondents in the pattern mixture 
model is that the intercepts in the regression vary with  
counties for the respondents but not for the nonrespondents; 
other parameters are the same. In this way we are able to 
“center” the nonignorable nonresponse model on the 
ignorable nonresponse model with some variation; see 
Nandram and Choi (2002 a) for a similar idea. We need to 
do so because the parameters become unidentifiable if 
substantial difference between the respondents and the 
nonrespondents is assumed in the nonignorable nonresponse 
model without the scientific knowledge. While we have 
used random effects to discriminate between the 
respondents and the nonrespondents, the parameters 
providing systematic difference between the respondents 
and nonrespondents in model of Rubin (1977), are not 
identifiable. Note that while in the pattern mixture model in 
(A.4) there are  two specifications/patterns for ijx  (i.e., 

0=ijr  and ),1=ijr  but in the selection model there is a 
single specification. 

We show how to specify parameters like ,, )0()0( Δθ  
2,1,, )0()0( =Δ kkkα  in Appendix C. For a proper diffuse prior 

we choose a to be a value like 0.002. One can also use a 
shrinkage prior on 2

1
−σ  and 2

2
−σ  (see Natarajan and Kass 

2000; and Daniels 1999). But this is not necessary in the 
hierarchical model. 

It is an attractive property of the hierarchical Bayesian 
model that it introduces correlation among the variables. For 
example, in the selection model, (4) and (7) introduce a 
correlation among the ijr  and the ,ijx  respectively. This is 
the clustering effect within the areas. Such an effect can be 
obtained directly, but it will not be as simple as in a 
hierarchical model. A further benefit of the hierarchical 
model is that it takes care of extraneous variations among 

the areas; this is intimately connected to the cluster effect. 
Yet another benefit is that there is robustness in the model 
specifications at deeper levels beyond the sampling process 
(e.g., inference with (5) and (8) is fairly robust to moderate 
perturbations of the specifications of the hyperparameters). 
We have found this empirically here and elsewhere.  

We obtain an ignorable nonresponse selection model by 
setting 01 =β i  for all counties with appropriate adjustment 
in the selection model. For an ignorable nonresponse pattern 
mixture  model we set ++′= )( 01 iijij vx αz )( 12 iij v+′ αz  

ijija ∈+  for both values of the .ijr   
3.2 Model Fitting   

In this section we describe how to use the Metropolis-
Hastings sampler to fit the models. We also use a deviance 
measure to select the best model among our four models. 
Then, we use a cross-validation analysis to assess the 
goodness of fit of the selected model, and because the same 
general principle applies to the four models, we describe 
model fitting for the selection model only. 

Thus, we now combine the model for the response 
mechanism and the model for the BMI values to obtain the 
joint posterior density of all the parameters. The ijx  for 

lKK ,,1,,,1 =+= inrj ii  are unknown; that is, they are 
latent variables. We denote these latent variables by ),( nrsx  
and the observed data are denoted by .obsx  Using Bayes’ 
theorem to combine the likelihood function and joint prior 
distribution, we obtain the joint posterior density which, 
apart from the normalization constant, is 

)|,,,,,,,( ),(
21

2),( rsnrsp xvx ρρθβασ  and is given in 
(B.1) in Appendix B. 

The posterior density in (B.1) is complex, so we used 
Markov chain Monte Carlo (MCMC) methods to draw 
samples from it. Specifically, we used the Metropolis-
Hastings sampler (see Chib and Greenberg 1995 for a 
pedagogical discussion). We also used the trace plots and 
autocorrelation diagnostics reviewed by Cowles and Carlin 
(1996) to study convergence and we used the suggestion of 
Gelman, Roberts and Gilks (1996) to monitor the jumping 
probability in each Metropolis step in our algorithm. In 
performing the computation, centering the BMI  values help 
in achieving convergence (see Gelfand, Sahu and Carlin 
1995). However, this is not quite a straightforward task 
because centering in the logistic regression affects the BMI 
part of the model as well.  

We obtained a sample of 1,000 iterates which we used 
for inference and model checking. By using the trace plots 
we “burn in” 1,000 iterates, and to nullify the effect of 
autocorrelations, we picked every tenth iterate thereafter. 
This rule was obtained by trial and error while tuning the 
Metropolis steps. We maintain the jumping probabilities in 
(0.25, 0.50); see Gelman et al. (1996). 
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3.3 Model Selection and Model Assessment   
We used the minimum posterior predictive loss approach 

(Gelfand and Ghosh 1998) to select the best model among 
the first four.  

Under squared error loss the minimum posterior 
predictive loss is 
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where ΩΩπΩ= ∫ dxfxf ijij )|()|()|( obspreobspre xx  and 
pre
ijx  are the predicted values and Ω  is the  set of all 

parameters. This measure extends the one obtained earlier 
(Laud and Ibrahim 1995), and we have taken 100=k  to 
match this earlier version. Note that for the nonresponse 
application, these measures are computed only on the 
complete BMI data after fitting our nonresponse models.  

In Table 1 we present the deviance measure )( 100D  and 
its associated components, goodness of fit (G) and the 
penalty (P) for the four models. Using the deviance measure 
the selection model is much better. While P is roughly the 
same, G is much smaller, making 100D  smaller for the 
selection model. The difference between the two pattern 
mixture models are more pronounced than the difference 
between the two selection models. However, because 
standard errors are not available, it is difficult to tell the 
strength of the difference. 
 

Table 1 
Comparison of the Ignorable, Pattern Mixture and the  

Selection Models Using the Deviance Measure 
 

Model G P D100 

SEI 135 135 270 
SE 118 135 253 

PMI 268 135 403 
PM 204 135 339 

 

Note: ( ) PGD )1100/(100100 ++=  where G is a goodness 
of fit, P a penalty and D the deviance; the pattern 
mixture (PM) model and the selection model (SE) are 
both nonignorable. SEI is ignorable version of the 
selection model, PMI is ignorable version of the pattern 
mixture model.  

Next, we look for deficiencies in the selection model. We 
use a Bayesian cross-validation analysis to assess the 
goodness of fit of the selected model (i.e., the selection 
model). We do so by using deleted residuals on the 
respondents’ BMI values.  

Let ),( )()( ijij rx  denote the vector of all observations 
excluding the th)( ji  observation ).,( ijij rx  Then, the th)( ji  
deleted residual is given by  

.),|STD()},|(E{DRES )()()()( ijijijijijijijij xxx rxrx−=  

These values are obtained by performing a weighted 
importance sampling on the Metropolis-Hastings output. 
The posterior moments are obtained from  

.),|()|(),|( )()()()( ΩΩπΩ= ∫ dxfxf ijijijijijij rxrx  

For the pattern mixture model  
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and for the selection model  

}.,)(){(Normal~)|( 2
31201 σ+′++′Ω ijiijiijij avvxf αα zz  

We also considered using the conditional posterior 
ordinate (CPO) which is ),|( )()( ijijijxf rx  evaluated at the 
observed .ijx  However, these CPO’s lead to similar results 
for identifying extremes.  

We drew box plots (not shown) of DRES versus the four 
levels of race-sex and the thirty five counties, and they 
showed that the selection model fits well. We drew box 
plots of DRES versus age and, interestingly, we found a 
pattern. Age class 2 – 4 seems to fit well; the predicted BMI 
values are somewhat high for age class 5 – 9; and age classes 
10 – 14 and 15 – 19 have larger variability. We look at the 
box plots of DRES versus age even further by separating 
out the box plots for 18 (i.e., 2 – 19 years old) individual ages 
(see Figure 1). Ages 11 – 19 fits well, but there is a problem 
with ages 2 – 10 (i.e., a downward curvature in the medians). 
The other three models show similar patterns. A further 
refinement of the selection model in section 5 fixes this 
problem. 

 
4. Estimation and Prediction  

In this section we perform an analysis on the NHANES 
III BMI data for children and adolescents (i.e., 2 – 19 years 
old). We use the selection model, and then as a means to 
study sensitivity, we compare prediction under the non-
ignorable nonresponse selection model with that of the other 
three models.   
4.1 Estimation  

We have studied the relation between BMI and age using 
95% credible intervals for the parameters in the selection 
model. First, the interaction of race and sex is not important, 
but as expected there is an important relation of BMI on 
age. BMI increases substantially with age (95% credible 
interval for 21α  is (11.89, 13.67)). The rate of increase for 
white males is smaller (95% credible interval for 22α  is 

)19.0,30.2( −−  and the 95% credible interval for 23α  is 
)).64.0,03.3( −−  Thus, while BMI increases with age, 

there is relatively less increase for white males. Apart from 
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the parameter ,1θ  which indicates strong nonignorability, 
the other parameters are essentially unimportant. For 
example, the 95% credible intervals for 1ρ  and 2ρ  are 

)39.0,53.0(−  and )45.0,45.0(−  respectively indicating 
that a simpler model can be used (i.e., 021 =ρ=ρ ).  

We take up the issue of ignorability further. We drew 
box plots (not shown) of the posterior densities of the ,1iβ  
obtained from the iterates from the Metropolis-Hastings 
sampler, by county. All the box plots are above zero. This 
suggests that the nonresponse mechanism for each county is 
nonignorable. In addition, there are varying degrees of 
nonignorability. For example, several counties have the 
medians of the box plots near 1.5 while others have them 
near 2.  
4.2 Prediction  

It is desirable to predict the finite population mean BMI 
value and the proportion of respondents in the finite 
population. The sampled nonrespondents’ BMI values are 
obtained through their conditional posterior densities 
included in the Metropolis-Hastings sampler. The non-
sampled BMI values are to be predicted. 

It is worthwhile noting that our models are applied to the 
logarithm of BMI with each individual having her/his 
covariates, and so the logarithm of each individual non-
sampled value has to be predicted and then retransformed to 

the original scale. However, the computation is reduced 
considerably because age, race and sex for each nonsampled 
individual is not known, but the number of individuals in 
each age-race-sex domain is known in the U.S. population 
by county.  

The distributions of the nonsampled individuals are  

,),|()|,(),|,( obsobsobsobs ΩΩπΩ= ∫ drxfrxf ijijijij rxrx  

.,,1,,,1 ii Nnji KlK +==  For the pattern mixture model 
we have  

)|(),|()|,( ΩΩ=Ω ijijijijij rprxfrxf  

and for the selection  model we have  

),|(),|()|,( ΩΩ=Ω ijijijijij xfxrprxf  

where Ω  denote the set of all parameters.  
Therefore, if we take a sample of size M from the 

posterior distribution, },,,1:{ )( Mhh K=Ω  an estimator for 
)|,( obsxijij rxf   
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h
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Thus, we can fill in the ijx  and ijr  for each )(hΩ  obtained 
from the MCMC algorithm from which we get M 
realizations .,,1,, )()( MhPX h

i
h

i K=  Inference can now be 
made about iX  in (1) and iP  in (2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.  Box plots of the cross-validation residuals (DRES) by  
  age for the selection model 
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We present 95% credible intervals for the finite popu-
lation mean (FPM) BMI value and the finite population 
proportion (FPP) responding in order to judge sensitivity to 
the four models. Note that we provide these intervals for 
each domain: race by sex for each age class by county, and 
because they are very similar across domains we have 
presented in Table 2 the average of the end points of the 
credible intervals over county for black females only. The 
intervals for the FPM across the models are very similar. 
However, those for the FPP are very different. The intervals 
for the pattern mixture model and its ignorable version are 
similar except for age class 2 – 4. This is expected because 
these models express a linear regression of the logarithm of 
the odds of responding on age. The intervals for the FPP 
under the two pattern mixture models are essentially the 
same because they have the same relation with age, race, 
sex and their interaction. The intervals for the ignorable 
version of the selection model are all the same over age 
because in the response part of this model both age and BMI 
are ignored. We note that the intervals for the selection 
model have forms similar to the pattern mixture model and 
its ignorable version. As the intervals indicate, the FPM and 
FPP increase with age.  

 
5. A Spline Regression Model  

We now address the issue associated with the box plot in 
Figure 1. We have a further look at the observed data. A box 
plot of observed BMI values versus age shows that BMI is 
roughly constant for ages 2 – 8, then rises roughly linearly 
for ages 8 – 13, and finally rises very slowly for ages 14 – 19. 
This apparently important feature is not included in the four 
models. Thus, in this section we attempt to exploit this 
feature using a spline regression model.  

We have used Part 1 of the selection model, and for Part 
2 we use a join-point regression model. Generically, letting 

0=+c  if 0≤c  and cc =+  if ,0>c  we take  

ijijijijijijij eaax +−ϕ+−ϕ+ϕ= ++ 13))8( 210  (9) 

where in the spirit of our four models  

.2,1,0, =+=ϕ kvkikijkij αz  

In (9) we have taken  

),0(Normal| 2
3

idd
2
3 ~ σσije  

and motivated by our earlier result (the kiv  are 
uncorrelated),  rather than a trivariate normal density on 

,),,( 321 ′= iiii vvvv  we have taken  

.2,1,0),,0(Normal| 2
idd

2 ~ =σσ kv kkki  

The distribution assumptions on the hyper-parameters 
remain unchanged.  

We have computed the deviance measure for the spline 
model; see Table 1 for the other four models. For this model 

129≈G  and 107≈P  compared with 118≈G  and 
135≈P  for the selection model. That is, 236100 ≈D  for 

the spline regression model and 253100 ≈D  for the 
selection model. Thus, the spline regression model shows an 
improvement over the original selection model. 

In Figure 2 we present box plots of DRES versus age. 
This is a much improved plot over the one for the selection 
model (see Figure 1). Observe that the medians fluctuate 
about 0 with very little variation. The box plots for ages 2, 3, 
4, 5, 6 and 7 are a little less variable than the others. We also 
fit the quadratic join-point model in which we replace (9) by 

ijijijijijijij eaax +−ϕ+−ϕ+ϕ= ++ 2
210 })13{()8(  

with all other assumptions remaining unchanged. This 
model did not show any substantial improvement over the 
alternative model specified by (9), which we retain without 
further refinement. 

 
Table 2 

Comparison of the Four Models Based on the Average Over All Counties of the End Points of the 95%  
Credible Intervals for the Finite Population Mean BMI (FPM) and Proportion (FPP) Responding for Black Females 

 

age 
Model  2 – 4 5 – 9 10 – 14 15 – 19 
SEI FPM (14.80, 16.07) (17.09, 18.58) (19.63, 21.61) (22.40, 25.19) 
 FPP (0.73, 0.79) (0.73, 0.79) (0.73, 0.79) (0.73, 0.79) 
SE FPM (15.55, 16.21) (17.49, 18.36) (19.52, 20.92) (21.74, 23.91)  
 FPP (0.66, 0.78) (0.71, 0.81) (0.75, 0.84) (0.78, 0.87) 
PMI FPM (14.75, 16.10) (17.04, 18.59) (19.59, 21.55) (22.42, 25.09) 
 FPP (0.49, 0.70) (0.72, 0.84) (0.84, 0.94) (0.90, 0.98) 
PM FPM (14.96, 15.79) (17.16, 18.38) (19.61, 21.45) (22.37, 25.07) 
 FPP (0.49, 0.70) (0.73, 0.84) (0.84, 0.94) (0.90, 0.98)  

 Note:  SEI is ignorable version of the selection model, PMI is ignorable version of the pattern mixture model,  
PM is pattern mixture model, and SE is selection model. 
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  Figure 2.  Box plots of the cross-validation residuals (DRES) by  
   age for the spline regression model 
 
 

In Table 3 we compare the FPM for the selection models 
(regression without splines and regression with splines). 
Again we average the end points of the 95% credible 
intervals over all counties. The intervals overlap suggesting 
similarity between the model without splines and the one 
with them. However, there are some exceptions. The largest 
difference between the intervals occur for individuals age 
15 – 19 years old. In general, the spline model provides 
higher precision. For example, for age 10 – 19 the intervals 
for the spline model are contained by those for the model 
without the splines.  

 

6. Conclusions 
 

To analyze BMI data from NHANES III by age, race and 
sex within each county, (a) we have extended the normal-
logistic regression model to a hierarchical Bayesian 
selection model, and (b) constructed a pattern mixture 
model and two ignorable nonresponse models to assess 
sensitivity to inference. A deviance measure shows that 
among the four models, the selection model is the best, and 
a cross-validation analysis shows that these models fit 
roughly equally well.  

Table 3 
Comparison of the Two Selection Models (Regression Without Splines and Regression with Splines) using the Average 

Over all Countries of the End Points of the 95% Credible Intervals for the Finite Population Mean BMI by Age, Race and Sex 
 

age 
R – S  2 – 4 5 – 9 10 – 14 15 – 19 
BF No Spline (16.26, 16.92) (16.44, 17.10) (19.62, 21.41) (21.35, 25.62) 
 Spline (15.65, 16.31) (17.62, 18.41) (19.70, 20.91) (21.95, 23.82) 
BM No Spline (16.10, 16.76) (16.26, 16.92) (18.83, 20.55) (20.45, 24.53)  
 Spline (15.68, 16.32) (17.32, 18.11) (19.03, 20.21) (20.84, 22.61) 
OF No Spline (16.39, 17.00) (16.56, 17.17) (19.48, 21.19) (21.16, 25.39) 
 Spline (16.01, 16.60) (17.77, 18.54) (19.62, 20.79) (21.61, 23.38) 
OM No Spline (16.53, 17.14) (16.67, 17.29) (19.22, 20.95) (20.83, 24.98) 
 Spline (16.16, 16.74) (17.74, 18.51) (19.38, 20.55) (21.13, 22.87) 

 

 Note:  R – S is race-sex: BF is black female; BM is black male; OF is non-black female; and OM is non-black male.  
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Another contribution is the identification of a common 
deficiency in the selection model, the pattern mixture model 
and the two ignorable models. Based on the observed data, 
we have found that there is a dynamic relationship of BMI 
with age. Thus, we have further extended the selection 
model to include three linear splines. The cross validation 
analysis shows that there is an improvement over the 
selection model, and in fact, the deviance measure shows 
that the linear spline regression model is the best among the 
five models.  

Our study on obesity is one of the key contributions in 
this work. The linear spline regression of BMI on age 
adjusting for race and sex, gives a better fit and improved 
precision than the selection model without splines. It is not 
easy to construct a model that is satisfactory for all aspects 
of the NHANES III data simultaneously. We have been able 
to do so for children and adolescents. BMI increases 
substantially with age; race and sex contributing negatively 
to this increase; there is relatively less increase for white 
males. In general, the effects of race and sex are relatively 
minor. There is some variation across the thirty five 
counties.   

Appendix A  
The Pattern Mixture Model  

For Part 1 of the pattern mixture model the response 
depends on age, race and sex, and the interaction of race and 
sex through the logistic regression  
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.,,1,,,1 iNjli KK ==  Now, letting, =iβ  
,),,,,( 43210 ′βββββ iiiii  note that while the vector iβ  has 

5=p  components, the corresponding vector in (4) has two 
components. Analogous to (4) we take  
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and for the prior distribution, 
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where )0()0()0( ,, ΛΔθ  and )0(v  are to be specified. Part 2 of 
this model for BMI incorporates a dependence on the 
response indicators, letting ,,1 10 ijijij aww ==   
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The distributions on the ),( 10 ii vv  are the same as in (7). 
The prior distributions are exactly those in Part 2 of the 
selection model (i.e., see (6) and (7)). 

We take ,2)0( pv =  a value that indicates near 
vagueness, maintains propriety and permits stability in 
computation. We show how to specify parameters like 

)0()0()0()0()0( ,3,2,1,,,, Λ=ΔΔ tttαθ  in Appendix C. 

 
Appendix B 

Metropolis-Hastings Algorithm for Fitting the 
Selection Model  

For the nonignorable nonresponse selection model the 
joint posterior density is  
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Let Ω  denote the set of parameters ,,,, αθβ v  

21
2
3 ,, ψψσ  and ),( nrsx  where ),,( 1

2
2

2
11 ′ρσσ=ψ  and 

=2ψ .),,( 2
2
5

2
4 ′ρσσ  Generically, let aΩ  denote all 

parameters in Ω  except ;a  for example, =Ωβ  
),,,,,,,( ),(

21
2
3

nrsxv ψψαθ σ  so that the conditional 
posterior density (CPD) of β  is denoted by 

).,|( ),( rsp xββ Ω  To perform the Metropolis-Hastings 
algorithm, one needs the CPD for each parameter given the 
others and .),( rsx  Here we give a sketch of the algorithm.  

The CPD for each of the parameters αθ ,, v  and 2
3σ  is 

easy to write down. But we need Metropolis steps for the 
CPD’s of ,,, 21 ψψβ  and .),( nrsx  
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Conditioning on ,βΩ  the parameters ,,,1 lββ K  are 
independent with  
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and lixij ,,1, K=  and ii nrj ,,1 K+=  are to be predicted; 
see below. We use a technique based on logistic regression 
to obtain a multivariate Student’s t proposal density in 
which tuning is obtained by varying its degree of freedom. 

The method to draw from the CPD’s of =1ψ  
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We have used the Fisher’s z transformation (see Ruben 
1966) to obtain a proposal density associated with normal 
distribution for )}1/(log{ 22 ρ−ρ  and gamma distributions 
for 2

4σ  and .2
5σ  

Finally, we consider the Metropolis step for drawing 
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We have constructed a proposal density using  least squares 
techniques. We note that the proposal density 
Normal ),)(( 2

31021 σ+++ ijiiijij avva ααz  did not perform 
well (see Chib and Greenberg 1995). 

 
Appendix C 

Specification of Hyperparameters  
We discuss how to specify the hyperparameters 

),( )0()0( Δθ  and ,2,1),,( )0()0( =Γ kkkα  associated with θ  and 
2,1, =kkα  in the selection model. 

First, consider ).,( )0()0( Δθ  For injli ,,1,,,1 KK ==  
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prediction (see Appendix A). Letting lii ,,1,ˆ K=β  denote 

the least squares estimators, we assume that 
~
iidˆ

iβ Normal )
~

,( )0()0( Δθ  to get i
l
il βθ ˆ/1 1

)0( ∑ ==  and 

)ˆ()ˆ(
1

1~̂
)0()0(

1

)0( θβθβ −−
−

=Δ ∑
=

ii

l

il
 (C.1) 

and we set ,
~̂ )0(

1
)0( Δκ=Δ  where 1κ  is to be selected. 

Next, we consider how to specify .2,1),,( )0()0( =Γ kkkα  
We fit ,)( 21 ijijijij eax ++′= ααz  where ija  is the age of the 

thj individual in the thi  county, injli ,,1,,,1 KK ==  to 
get least squares estimators, )ˆ,ˆ(ˆ 21 ααα =  and its covariance 
matrix .ˆ )0(Γ We set ,ˆ)0(

kk αα =  and ,ˆ )0(
2

)0(
kk Γκ=Γ  where 

2,1,ˆ )0( =Γ kk  is the corresponding block matrix of 
2,1,ˆ )0( =Γ k  and 2κ  is to be specified. 

We have experimented with 1κ  in (C.1). We used 
1001 =κ  to provide a proper diffuse prior; a value of 

000,11 =κ  did not change our predictions. Similarly, we 
used .1002 =κ  
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Towards Nonnegative Regression Weights for Survey Samples 

Mingue Park and Wayne A. Fuller 1 

Abstract 

Procedures for constructing vectors of nonnegative regression weights are considered. A vector of regression weights in 
which initial weights are the inverse of the approximate conditional inclusion probabilities is introduced. Through a 
simulation study, the weighted regression weights, quadratic programming weights, raking ratio weights, weights from logit 
procedure, and weights of a likelihood-type are compared. 
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1. Introduction  
In survey sampling, information about the population is 

often available at the analysis stage. One method of using 
this information is through regression estimation. There are 
a number of ways to construct a regression estimator of the 
population mean or total. One regression estimator of the 
mean is 
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)...,,(diag 11 nnφφ=Φ  is a nonsingular diagonal matrix, 
the iπ ’s are the selection probabilities and Nx  is the 
population mean of .x  A possible choice of 1−φii  is .iα  A 
review of the use of such information in regression esti-
mation for sample surveys is given by Fuller (2002). 

It is well known that regression weights that are used to 
define a regression estimator such as (2) can be very large or 
(and) can be negative. If the regression weights are to be 
used to estimate a finite population total in a general pur-
pose survey, it seems reasonable that no individual weight 

should be less than one. Also, it seems reasonable, on 
robustness grounds, to avoid very large weights. 

There are several ways to construct regression weights 
with a reduced range of values. Huang and Fuller (1978) 
defined a procedure to modify the iw  so that there are no 
negative weights and no large weights. Husain (1969) sug-
gested quadratic programming as a procedure to place 
bounds on the weights. Quadratic programming and a 
number of other procedures build on the fact that the 
weights can be defined as values that optimize some 
function. Deville and Särndal (1992) considered seven 
objective functions that can be used to construct weights. 
They suggested objective functions that can be used to 
produce weights which fall within a given range. Deville, 
Särndal and Sautory (1993) introduced the program, 
CALMAR, written as a SAS macro that can be used to 
calculate weights corresponding to four different objective 
functions when auxiliary information in the survey consists 
of known marginal counts in a frequency table. 

Another modification of regression weights is to relax 
some of the restrictions used in constructing the estimator. 
Husain (1969) considered modifying weights for a simple 
random sample from a normal distribution. He derived the 
weights that minimize the mean square error (MSE) of the 
resulting estimator. Bardsley and Chambers (1984) con-
sidered an estimator based on an objective function and the 
division of the auxiliary variable into two components. They 
studied the behavior of the estimator from a model 
perspective. Rao and Singh (1997) studied an estimator in 
which tolerances are given for the difference between the 
final estimator for part of the auxiliary variables vector and 
the corresponding elements of the population vector. 

In this paper, we consider different types of regression 
weights including a procedure based on Tillé’s (1998) con-
ditional selection probabilities. The approximate conditional 
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inclusion probabilities are used to compute regression 
weights that are positive for most samples. These regression 
weights are compared to raking ratio weights, to quadratic 
programming weights, weights from logit procedure, and to 
weights based on a likelihood-type objective function. 

 
2. Maximum Likelihood and  

       Raking Ratio  
Consider a two-way table with r  rows and c  columns. 

The population cell ijU  contains ijN  elements; ...,,1=i  
....,,1, cjr =  Assume marginal counts ji NN ⋅⋅ ,  are 

known. The population characteristics of interest are the 

ijN  or, equivalently, .1
ijij NNp −=  For a simple random 

nonreplacement sample of size ,n  Deming and Stephan 
(1940) suggested a raking ratio procedure to get the solution 
for the cell frequencies. See also Stephan (1942). If we 
assume the sample is a random sample from a multinomial 
distribution defined by the population entries in a two way 
table, we can construct an estimator using the maximum 
likelihood procedure. 

Deville and Särndal (1992) defined a class of calibration 
estimators, ,caly  of the population mean of y  as 

∑
=

=
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1
cal ,  (3) 

where the iw ’s minimize the objective function 
∑ = αn

i iiwG1 ),(  subject to constraints 
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and ),( iiwG α  is a measure of distance between an initial 
weight iα  and a final weight .iw  The raking ratio and 
maximum likelihood estimators of the population cell 
fraction, ,ijp  belong to the class of calibration estimators. 

The raking ratio weights for the population cell fraction, 
with a simple random sample, can be obtained by 
minimizing 
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subject to the constraints (4) with 

,)...,,,...,,( 11 crk ⋅⋅⋅⋅ δδδδ=x  (6) 

where 1=δ ⋅i  if thk  element belongs to the thi  row and 
0=δ ⋅i  otherwise, and 1=δ⋅ j  if thk  element belongs to the 

thj  column and 0=δ⋅ j  otherwise. The raking ratio 
estimator for the population cell fraction ijp  is the estimator 
(3) where 1=ky  if the thk  element belongs to cell ij  and 

0=ky  otherwise. 

For the maximum likelihood estimator of the population 
fraction, with a simple random sample, Deville and Särndal 
(1992) suggested minimizing 
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subject to (4) with x  defined in (6). 
Chen and Sitter (1999) suggested a pseudo empirical 

likelihood estimator. They defined the population likelihood 
of iy  as 

∑
=

N

i
Uiw

1
, ,log  (8) 

where Uiw ,  is the density at observation .iy  With a sample 
of size ,n  they suggested the pseudo empirical likelihood 
estimator of the form 

∑
=

=
n

i
ii ywy

1
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where iw ’s are obtained by minimizing the function 

∑
=

−π−
n

i
ii w

1

1 ,log  (10) 

under the restrictions (4). The resulting iw  are equal to 
those obtained by minimizing (7) with iN π=  under the 
restrictions (4). 

Deville and Särndal (1992) showed that the raking ratio 
and maximum likelihood estimators are approximately 
equal to a regression estimator of the form (1), and, hence, 
have the same limiting distribution as the regression 
estimator. Weights for the raking ratio and maximum 
likelihood estimators are nonnegative if the solutions for the 
weights exist. 

 
3. Weighted Regression Using 
       Conditional Probabilities  

Tillé (1998) suggested the use of approximate 
conditional inclusion probabilities, conditioning on the 
Horvitz-Thompson estimators of auxiliary variables, to 
compute an estimator for the population mean of the study 
variable. His approximation can be extended to produce 
regression weights that are nonnegative with high 
probability. 

Assume that the vector of population means of auxiliary 
variables, ,Nx  is known. Consider the Horvitz-Thompson 
estimator of Nx  given by 

,
1

1
HT ∑

= π
=

n

i i

i

N

x
x  (11) 
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where )...,,( 1 ipii xx=x  and iπ  is the unconditional 
inclusion probability. Tillé (1998) introduced the simple 
conditionally weighted (SCW) estimator, 

,
1

1 | HT

∑
=

π π
=

n

i xi

i
p

y

N
y  (12) 

where 
HT|xiπ  is the conditional inclusion probability of the 

thi  element conditioning on .HTx  To construct the SCW-
estimator of ,Ny  the conditional inclusion probability 

HT|xiπ  is required. If HTx  takes the value ,t  we have 

,
}{

}|{

HT

HT
| HT tx
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where A  is the set of indices for the sample elements. 
In order to compute the conditional inclusion probabil-

ities, it is necessary to know the probability distribution of 

HTx  unconditionally and conditionally on the presence of 
each unit in the sample. Except for some particular cases, 
this probability distribution is very complex. For this reason, 
approximation of the conditional inclusion probability is 
considered. 

Under the assumption that HTx  has an approximately 
normal distribution unconditionally and conditionally on the 
presence of each unit in the sample, the conditional inclu-
sion probability (13) can be approximated by 
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A  is the set of indices appearing in the sample and 
}...,,{ 1 NyyF =  is the finite population. Tillé (1998) gives 

an expression for )(, ixx∑  for the general case. 
Assume the design covariance matrices xx∑  and )(, ixx∑  

are positive definite and assume the vector of auxiliary 
variables is normally distributed. Tillé (1999) showed that 
the SCW-estimator defined in (12) with the approximate 
conditional inclusion probabilities of (14) satisfies 
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,)...,,(,)...,,( 11 ′=′′′= nn yyyxxX  the thij  element of 
1−Φ  is xxjiijjiijN ∑),()( 12 ππ−ππππ −−  is the design 

variance of ,HTx yx∑  is the design covariance of HTx  and 
,HTy xx∑̂  is the Horvitz-Thompson variance estimator of 
,HTx  and yx∑̂  is the Horvitz-Thompson estimator of the 

covariance of HTx  and .HTy  
Given a complex design, a number of the quantities in 

(14) are difficult to compute. However, approximations 
giving the same large sample properties for the estimator are 
relatively easy to compute. We replace xx∑  and )(, ixx∑  
with estimators, replace )(, iNx  with ,

ixN dx +  define 
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where 
ixd  is a function of the sample and yxM  is a 

population quantity. Often yxM  is the population covari-
ance matrix ,yx∑  but this equality is not required in order 
for the estimator to be well defined. In many cases one can 
compute 

ixd  as a multiple of the jackknife deviate. Also in 
many situations, an adequate value for the estimator, 

,
~

)(, ixx∑  of )(, ixx∑  is .ˆ)1(1
xxnn ∑−−  We write our gener-

alization of (14) as 
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An approximate conditional inclusion probability with a 
simple random sample and a single auxiliary variable is 
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The SCW-estimator (21) with the approximate 

conditional inclusion probabilities is not calibrated, that is, 
the estimator (21) for the mean of the vector of auxiliary 
variables is not the vector of population means. It is 
relatively easy to standardize the probabilities so that they 
sum to one or sum to the stratum fraction for stratified 
sampling. To construct a calibrated estimator for the general 
case, we suggest computing the regression estimator with 
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and 
HT|

~
xiπ  is the approximate conditional inclusion 

probability of (20). We assume the vector of auxiliary 
variables contains one so that the estimator is location 
invariant. 

The estimator (21) is approximately equal to a regression 
estimator and estimator (22) is also approximately equal to 
the same regression estimator.  
Theorem: Let a sequence of populations and samples, 
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where D  denotes a diagonal matrix having the elements of 
the diagonal of xx∑̂  on its diagonal. Let 

ixd  be a function 
of the sample satisfying (19) and assume (18) holds. 
Assume the sequence of Horvitz-Thompson variance 
estimators satisfies 
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If ,0}{Var 1
1 >π∑ =
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i i  assume ix  contains one as an 

element. Assume .yxyx ∑=M  Then the weighted 
regression estimator of (22) satisfies 
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For proof, see the appendix. 
To illustrate the nature of the different types of regression 

weights, we selected a simple random sample of size 40 
from a normal population with mean zero and variance one. 
The sample mean is – 0.614 and the population mean is 
zero. The  weight for the regression estimator is given by (2) 
with .11 −− =φ=α niii  The weights for the raking ratio and 
MLE are obtained by minimizing the objective functions (5) 
and (7), respectively, under the restriction (4). Weights for 
the SCW-weighted regression estimator are given in (22). 
The weights are plotted against the sample x  values in 
Figure 1. Five of the simple regression weights are less than 
zero because of the large discrepancy between the sample 
and the population means. All weights for the SCW-
weighted regression estimator, MLE and raking ratio are 
nonnegative. Figure 1 shows that the behaviors of raking 
ratio and SCW-weighted regression weights are similar and 
that MLE has an extremely large weight in this sample. 
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Table 1 contains selected weights for the smallest x  values, 
x  values close to the sample mean, x  values close to the 
population mean, and the largest x  values. For the x –
values farthest from the population mean MLE gives the 
largest weights. For x –values near the sample mean the 
ordinary least squares weights are close to 1−n  while the 
other weights are less than .1−n  The MLE weights are close 
to 1−n  for x –values close to the population mean while the 
other weights are larger. 

Table 1 
Selected Regression Weights for Illustrated Example 

 

x Weights multiplied by n = 40 
 Reg W. Reg Raking MLE 

– 2.103 – 0.56 0.12 0.16 0.40 
– 1.941 – 0.40 0.12 0.20 0.40 
– 1.727 – 0.16 0.20 0.24 0.44 
– 0.710 0.88 0.68 0.68 0.68 
– 0.670 0.96 0.72 0.68 0.68 
– 0.468 1.16 0.88 0.84 0.76 
– 0.103 1.52 1.28 1.24 0.92 

0.021 1.68 1.44 1.40 1.00 
0.097 1.76 1.56 1.52 1.08 
0.628 2.32 2.60 2.60 1.84 
0.662 2.36 2.68 2.72 1.92 
1.237 2.96 4.60 4.88 9.12 

 
Simulation Study  

To compare the alternative methods of constructing 
regression weights we conducted a simulation study. A total 
of 30,000 simple random samples of size 32 were selected 
from a 2χ  distribution with two degrees of freedom. The 
parameters being estimated are those of the infinite 

generating mechanism. Let ix  be the value for the thi  
sampled element. Six estimation procedures were 
considered. 
 

1. Ordinary least squares regression (OLS) 
 

2. Quadratic programming with upper and lower 
bounds (QP) 

3. Weighted regression with SCW weights (SCW reg) 
 

4. Maximum likelihood objective function (MLE) 
 

5. Raking objective function (Raking reg) 
 

6. Logit procedure with upper and lower bounds (Logit)  
The weights for the OLS estimator were calculated by (2) 

with .1−=α ni  The quadratic programming weights 
minimize ∑ =

n
i iw1

2  subject to the constraint 065.00 ≤≤ iw  
for all i  and subject to constraints (4). The quadratic 
programming procedure is equivalent to the truncated linear 
method of case 7 of Deville and Särndal (1992). Weights for 
the SCW weighted regression were calculated by 
minimizing ∑ =

−αn
i ii w1

21  subject to constraints (4), where 

iα  is defined in (22). The weights for raking and maximum 
likelihood were obtained by minimizing the objective 
functions (5) and (7), respectively, under the restriction (4). 
Weights calculated by the logit procedure minimize the 
function ∑ =
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i inwG1 )(  subject to constraints (4),where 

,
1

ln)()(ln)()( 1
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

−
−−+= −

u

nwu
nwunwnwanwG i

iiii  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Comparison of four sets of weights. 
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if unwi <<0  and ∞  elsewhere, ,)1( 1−−= uua  and 
.08.2=u  Note that the solution for the logit procedure, if it 

exists, satisfies the bound restrictions 065.00 ≤≤ iw  for all 
.i  The logit procedure was introduced as a case 6 in Deville 

and Särndal (1992). As the upper bound for the weight, 
0.065 was used so that 3,026 samples (approximately 10%) 
have at least one raking regression weight greater than 
0.065. In 99 samples among 30,000, no solution for the 
quadratic programming and logit procedure is possible 
because no feasible point satisfies (4) and the bound 
restriction. For those 99 samples, the maximum of the OLS 
regression weights was used as the upper bound for the 
quadratic programming and logit procedures. 

Table 2 shows the average of the sum of squares for the 
six weights. The average weight is 1/32 = 0.03125 for every 
estimator. The least squares procedures have the smallest 
sum of squares of the weights because this is the objective 
function for those procedures. The least squares procedures 
also have a slightly smaller range in the sum of squares. One 
percent of the least squares samples have a normalized 
mean of squares greater than 1.401 while one percent of the 
mean of squares for raking are greater than 1.441.  

Table 2 
Monte Carlo Average of the Sum of Squares of the Weights 

 

 OLS QP SCW 
Reg 

MLE Raking 
Reg 

Logit 

Average of 32)(×′ ww  1.043 1.044 1.045 1.053 1.045 1.045  
Table 3 contains properties for the minimum of the 

weights. Maximum likelihood has the largest average 
minimum weight while the least squares procedures have a 
smaller average for the minimum weight. The variance of 
the minimum weight is largest for the ordinary least squares 
procedures. Note that QP permits weights that equal the 
lower bound of zero.  

Table 3 
Monte Carlo Mean, Variance and Quantiles  

of the Minimum Weight 
 

   Quantiles ( 32× ) 

Procedure 
Mean 

( 210× ) 
Variance 
( 510× ) 0.01 0.10 0.50 0.90 0.99 

OLS 2.22 6.46 – 0.10 0.34 0.79 0.96 1.00 
QP 2.21 6.32 0.00 0.32 0.79 0.96 1.00 
SCW Reg 2.44 3.58 0.22 0.49 0.84 0.97 0.99 
MLE 2.45 2.79 0.33 0.52 0.83 0.97 1.00 
Raking Reg 2.36 3.81 0.20 0.45 0.81 0.97 1.00 
Logit 2.25 5.23 0.09 0.36 0.78 0.96 1.00  

Among the procedures without bound restrictions on the 
weights, the ordinary least squares procedure has smaller 
maximum weight on average and much smaller variance for 
the maximum. See Table 4. The SCW-weighted regression 
has a smaller fraction of very large weights than MLE or 
raking ratio but a higher fraction of large weights than the 
ordinary least squares procedure. The bounded QP and 

Logit procedures have smaller mean and variance for the 
maximum weight than the procedures with no upper bound 
restrictions. 

Table 4 
Monte Carlo Mean, Variance and Quantiles  

of the Maximum Weight 
 

   Quantiles ( 32× ) 

Procedure 
Mean 

( 210× ) 
Variance 
( 510× ) 0.01 0.10 0.50 0.90 0.99 

OLS 4.25 17.35 1.00 1.03 1.20 1.92 2.93 
QP 4.17 11.91 1.00 1.03 1.20 1.92 2.08 
SCW Reg 4.56 26.42 1.03 1.07 1.27 2.12 3.47 
MLE 4.75 56.13 1.00 1.04 1.25 2.31 4.72 
Raking Reg 4.46 30.25 1.00 1.03 1.23 2.09 3.63 
Logit 4.13 10.23 1.00 1.03 1.21 1.82 2.08  

To evaluate the performance of the procedures when the 
linear model does not hold, we considered estimation of the 
percentiles of the distribution function of .x  Table 5 
contains the Monte Carlo bias of the percentile estimators 
where the table entries are  

,100]}ˆ{ˆ[)}]1(,{min[ 1 ×−− − PPEPP  

and P  is the percentile. For example, the Monte Carlo 
estimated relative bias in the ordinary least squares 
estimator of the 0.01 percentile is – 7.75%. The ordinary 
least squares estimator has the largest biases in estimating 
the population percentiles, among the procedures without 
bound restrictions. The MLE has the smallest bias for all 
percentiles except the ,75th  th95  and ,99th  where the 
SCW-weighted regression estimator has the smallest bias. 
For samples of size 32, many samples contain no 
observation greater than the th99  percentile. The QP and 
Logit procedures have larger bias than other procedures 
except for the th75  percentile. The biases of the QP and 
Logit procedures are relatively large for the lower 
percentiles.  

Table 5 
Monte Carlo Standardized Bias in Percentile Estimators 

 

Percentile Procedure 
 OLS QP SCW Reg MLE Raking Reg Logit 

0.01 – 7.75 – 8.43 – 2.88 – 2.13 – 4.70 – 8.30 
0.05 – 7.27 – 7.95 – 2.58 – 1.82 – 4.30 – 7.85 
0.10 – 6.66 – 7.31 – 2.27 – 1.57 – 3.91 – 7.26 
0.25 – 5.25 – 5.82 – 1.79 – 1.25 – 3.13 – 5.89 
0.50 – 3.21 – 3.46 – 1.37 – 1.16 – 2.18 – 3.53 
0.75 – 2.30 – 2.07 – 1.60 – 2.21 – 2.25 – 1.78 
0.90 4.60 5.31 1.27 0.22 2.62 5.68 
0.95 12.75 13.33 6.01 6.41 9.52 13.15 
0.99 32.94 32.36 19.03 22.66 26.65 30.03  

Table 6 contains the relative MSE of the percentile 
estimators where the table entries are  

.100]}ˆ{ˆ[)}]1(,{min[ 22 ×−− − PPEPP  

Thus the relative mean square error of the OLS estimator of 
the 0.01 percentile is 283.27%. Although the OLS estimator 



Survey Methodology, June 2005 91 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

of the 0.01 percentile had the largest bias OLS has the 
smallest mean square error for the 0.01 percentile among the 
procedures without bound restrictions. The QP, OLS and 
Logit procedures are superior for the extreme percentiles 
while the other procedures perform better for the middle 
percentiles.  

Table 6 
Monte Carlo Relative MSE of Percentile Estimators 

 

Percentile Procedure 
 OLS QP SCW Reg MLE Raking Reg Logit 

0.01 283.27 282.50 309.23 311.58 296.37 282.76 
0.05 53.91 54.23 57.41 57.07 54.97 54.06 
0.10 25.50 25.97 26.40 25.79 25.26 25.80 
0.25 8.00 8.41 7.77 7.23 7.42 8.41 
0.50 1.99 2.07 1.88 1.71 1.83 2.12 
0.75 3.65 3.68 3.62 3.66 3.63 3.67 
0.90 14.50 14.60 14.25 14.57 14.36 14.56 
0.95 39.40 38.65 40.99 41.66 39.93 37.94 
0.99 200.17 196.24 235.71 216.22 205.85 194.33  

In 562 of 30,000 samples at least one of the OLS 
regression weights is negative. In 17 of the samples at least 
one of the original SCW regression weights was negative. 
The use of quadratic programming with the OLS objective 
function (QP) to produce weights greater than or equal to 
zero and less than 0.065 increases the average sum of 
squares by less than one percent. See Table 7. Using 
quadratic programming to bound the SCW regression 
weights (SCW (QPL)) by zero increases the average sum of 
squares very little because there are so few weights that are 
changed.  

Table 7 
Monte Carlo Average of the Sum of Squares of the Weights for 

Samples with at Least One Negative OLS Weight 
 

   
OLS QP 

SCW 
– Reg 

SCW 
(QPL) MLE 

Raking 
– Reg 

Average of 32)(×′ ww  1.208 1.217 1.226 1.227 1.342 1.242  
Table 8 gives the Monte Carlo MSE for the 562 samples 

with negative ordinary least squares weights. The quadratic 
programming procedure is superior to other nonnegative 
weight procedures for the 0.01 percentile and is inferior for 
the 0.99 percentile. Of the 562 samples, 497 had a sample 
mean greater than the population mean. Recall that the study 
population has an exponential distribution. Because the 
weight on the largest observation is zero in the 497 samples 
there is a 100 percent error in the quadratic programming 
estimator of the 0.99 percentile for most of the 497 samples 
with a sample mean greater than the population mean. In 
sampling from a finite population the bound on the weights 
would be greater than or equal to 1−N  and the MSE of the 
quadratic programming procedure for the 0.99 percentile 
would be reduced. 

Quadratic programming is superior to the other calibrated 
procedures for the 0.01 percentile in samples with negative 

OLS weights. Raking regression and SCW-weighted 
regression are superior to MLE for the 0.01 and 0.05 
percentiles. This is because MLE often has the largest 
maximum weight.  

Table 8 
Monte Carlo Relative MSE of Percentile Estimators  
for Samples with at Least One Negative OLS Weight 

 

Percentile Procedure 
 OLS QP SCW (QPL) MLE Raking Reg 

0.01 287.52 291.11 350.58 461.80 344.06 
0.05 76.04 70.58 75.80 88.71 72.50 
0.10 44.80 40.74 39.31 38.84 36.05 
0.25 20.24 19.14 14.72 9.91 12.56 
0.50 5.03 5.31 3.65 2.26 3.35 
0.75 5.02 4.53 3.36 4.24 3.45 
0.90 23.77 23.69 20.04 18.80 20.49 
0.95 51.54 46.04 30.79 28.28 32.54 
0.99 206.33 90.08 39.40 57.54 43.49  

In 3,026 of 30,000 samples, at least one of the raking 
regression weights is greater than 0.065. In 2,152 samples, 
at least one of the OLS regression weights is greater than 
0.065, and in 3,209 samples at least one of the SCW 
regression weights is greater than 0.065. The use of 
quadratic programming with the OLS objective function to 
produce weights in (0.000, 0.065) increases the average sum 
of squares by 1.5 percent. Using quadratic programming to 
bound the SCW regression weights by 0.000 and 0.065 
increases the average sum of squares 0.8 percent. See the 
column for SCW (QP) of Table 9.  

Table 9 
Monte Carlo Average of the Sum of Squares of the  

Weights for Samples with at Least One Raking  
Reg Weight Greater than 0.065 

 

   SCW SCW Raking 
 OLS QP – Reg (QP) – Reg Logit MLE 

Average of 32)(×′ ww  1.210 1.228 1.221 1.231 1.228 1.232 1.290  
Table 10 gives the Monte Carlo relative MSE for the 

3,026 samples with raking regression weights greater than 
0.065. The quadratic programming is superior to SCW (QP) 
and Logit for the 0.01, 0.95 and 0.99 percentile and the 
Logit procedure is superior to quadratic programming for 
other percentiles. 
 

Table 10 
Monte Carlo Relative MSE of Percentile Estimators for Samples 

with at Least One Raking Reg Weight Greater than 0.065 
 

Percentile Procedure 
 SCW SCW Raking 
 OLS QP – Reg (QP) – Reg Logit MLE 

0.01 139.96 130.53 173.86 146.40 124.02 173.65 206.65 
0.05 39.83 42.88 39.35 41.69 39.87 37.14 40.83 
0.10 26.31 30.92 22.40 28.10 28.88 20.21 19.98 
0.25 13.56 17.72 10.13 15.69 17.71 8.65 7.01 
0.50 3.95 4.87 3.32 4.75 5.37 3.03 2.28 
0.75 4.84 5.35 4.89 5.58 5.37 5.05 5.48 
0.90 27.98 29.04 28.70 29.34 29.32 28.79 32.07 
0.95 74.15 67.54 85.02 68.12 65.98 83.13 95.99 
0.99 198.77 179.58 219.16 181.17 172.45 212.38 226.73 
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Discussion  
We began the research with the conjecture that starting 

with the SCW weights in a regression estimator would 
produce weights that were almost always positive and that 
the weights would have desirable properties as measured by 
the ability to estimate the distribution function of .x  To 
some extent these results support the conjectures. The 
minimum weights of the SCW regression are larger than 
those of OLS and comparable to those for raking. Quadratic 
programming can be used to remove the negative weights in 
the few samples with negative weights. If no upper bound is 
imposed, the maximum weights for the SCW weighted 
regression fall between those of least squares and raking. 

 It is known that all of the procedures in our simulation 
study have the same order 2/1−n  properties. Our simulation 
and the study of generalized raking procedures done by 
Deville et al. (1993) indicate that there are also modest 
differences in small samples. No procedure is superior with 
respect to all criteria. Because of the poor performance for 
the extreme percentiles, we recommend against the use of 
the MLE objective function. The quadratic programming 
and Logit procedure produced weights with marginally 
smaller sums of squares, marginally smaller maximum 
weights, and marginally smaller MSE for extreme 
percentiles than the raking regression. The MLE, SCW 
regression and raking procedures give marginally larger 
minimum weights and marginally smaller MSE for the 
middle percentiles of the x  distribution than quadratic 
programming and Logit procedure. The performances of 
quadratic programming and Logit procedures in estimating 
the distribution function of x  are comparable. 

 
Appendix  

Proof. The ratio of the determinants of estimated covariance 
matrices in (20) is 
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Using assumptions (24) and (19), the Taylor expansion at 
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Thus, by (26), (27) and (28), 
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because the θ  for x  is the identity matrix. By (30), 
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An Optimal Calibration Distance Leading to the Optimal  
Regression Estimator 

Per Gösta Andersson and Daniel Thorburn 1 

Abstract 

When there is auxiliary information in survey sampling, the design based “optimal (regression) estimator” of a finite 
population total/mean is known to be (at least asymptotically) more eEficient than the corresponding GREG estimator. We 
will illustrate this by some simulations with stratified sampling from skewed populations. The GREG estimator was 
originally constructed using an assisting linear superpopulation model. It may also be seen as a calibration estimator; i.e., as 
a weighted linear estimator, where the weights obey the calibration equation and, with that restriction, are as close as 
possible to the original “Horvitz-Thompson weights” (according to a suitable distance). We show that the optimal estimator 
can also be seen as a calibration estimator in this respect, with a quadratic distance measure closely related to the one 
generating the GREG estimator. Simple examples will also be given, revealing that this new measure is not always easily 
obtained. 

                                                           
1. Per Gösta Andersson, Mathematical Statistics, Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden; Daniel Thorburn, 

Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden. 

  
Key Words: Horvitz-Thompson estimator; Regression estimator; Survey sampling theory. 
 
 

 

1. Notation and Basics  
Consider a finite population U  consisting of N  objects 

labelled N...,,1  with associated study values Nyy ...,,1  
and −J dimensional auxiliary (column) vectors ...,,1x  

.Nx  We want to estimate the population total ∑ ∈= Ui iy yt  
by drawing a random sample s  of size n  (fixed or random) 
from ,U  with first and second order inclusion probabilities 

),,(),( sjiPsiP iji ∈=π∈=π  ....,,1, Nji =  The 
study values and the auxiliary vectors are recorded for the 
sampled objects and before the sample is drawn we assume 
that at least ∑ ∈= Ui ix xt  is known.  

This is the standard setup for a regression estimator. In 
section 2 we discuss different regression estimators: the 
common GREG estimator (Särndal, Swensson and 
Wretman 1992), the optimal estimator (Montanari 1987, 
Andersson, Nerman and Westhall 1995) and calibration 
estimators (Deville and Särndal 1992). It is well known that 
the GREG estimator can be obtained as a calibration 
estimator. In section 3 it is shown that this holds also for the 
optimal estimator, but with a more complicated distance 
measure. In the last two sections this and the optimal 
estimator are illustrated, first by theoretical examples and 
then by simulations. 

Finally some comments about matrix notation in this 
paper: Generally, the transpose of a matrix A  is denoted by 

TA  and if A  is square, the inverse (generalised inverse) is 
written ).(1 −− AA  We further let the column vectors 

siiy ∈= )(y  and X,)/1(0 sii ∈π=w  be the nJ ×  
“design” matrix of the auxiliary information from s  and 
finally nI  means a unit diagonal matrix of size .n  

2. Regression and Calibration Estimators  
An unbiased simple estimator of yt  is the Horvitz-

Thompson estimator ∑ ∈ =π= si
T

iiy yt ./ˆ 0wy  However, 
more efficient estimators may be obtained utilising the 
auxiliary information, e.g., the well-known model assisted 
GREG estimator, see Särndal et al. (1992). For example, 
constructed from the assumption of a homoscedastic linear 
regression superpopulation model the GREG estimator is 

)ˆ()()(ˆ 1
0 xx

T
r

T
r

TT
yrt ttXRXXRywy −+= −  (1) 

,gyT=  (2) 

where ∑ π== ∈ si iixnr /ˆ,0 xtIwR  and  

.))ˆ()(1(
1 1
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xx
T

r
T
i

i ∈

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

π
= ttXRXxg  

Now, the expression (2) for the GREG estimator is 
interesting since we also have that 

,x
T tgx =  (3) 

which is called the calibration equation. This brings us to an 
alternative possible derivation of the GREG estimator 
according to Deville and Särndal (1992). Suppose that we 
seek an estimator wyT  of yt  with a vector w  of sample-
dependent weights ,)( siiw ∈  which respects the corre-
sponding calibration equation, while also minimising the 
distance between w  and 0w  according to the quadratic 
distance measure 
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),()( 00 wwRww −− T  

where .)( 1
0

−= nIwR  
This results in 

,)ˆ()( 111
0 xx

TT ttXRXxRww −+= −−−  (4) 

which means that ,gw =  since here .1−= rRR  
Turning to the optimal estimator, consider first the vector 

)ˆ,ˆ( T
xtyt  and let xy,∑  be the covariance (row) vector of yt̂  

and xt̂  and xx,∑  the covariance matrix of .ˆ
xt  Now, the 

minimum-variance, see Montanari (1987), unbiased linear 
estimator (in yt̂  and xt̂ ) of yt  is the difference estimator 

.)ˆ(ˆ 1
,, xtt −+ −

xxxxyyt ∑∑  (5) 

Since xy,∑  and xx,∑  in practice are unknown, we let the 
optimal estimator be 
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where .))/()(( ,opt sjijiijjiij ∈πππππ−π=R  
In an asymptotic context, where ∞→n  and 

yxN ,
ˆ, ∑∞→  and xx,∑̂  may be viewed as components of 

the asymptotic covariance matrix of ).ˆ,ˆ( T
xyt t  Under the 

assumption of consistency of yx,∑̂  and ,ˆ
, xx∑  which holds 

under very mild conditions, see Andersson et al. (1995), the 
optimal estimator has the same asymptotic variance as the 
difference estimator (5). In particular it follows that the 
optimal estimator is asymptotically better than the usual 
GREG estimator, see Rao (1994), Montanari (2000) and 
Andersson (2001), i.e., its asymptotic variance is never 
larger and usually smaller. In section 5 we actually present 
some simple simulations showing that the optimal estimator 
can be much more efficient than GREG. However, one does 
not know anything about the efficiency for finite samples, 
since the covariance estimator may converge slowly. The 
rate of convergence is illustrated in section 5. Note also that 
in some cases there exist asymptotically even better 
estimators which are not linear. 

Now, the fact that the GREG estimator is also a 
calibration estimator using  

)()( 0
1

0 wwRww −− −
r

T  (7) 

as the distance measure and comparing (1) with (6), leads 
one to believe that replacing rR  by optR  in (7) should 
imply that we instead derive the optimal regression 
estimator as a calibration estimator. That this actually holds 
is shown below. 
 

3. The Main Result  
In order to show existence of a distance measure 

corresponding to the optimal estimator, we will first state 
and prove a result in the general case.  
Lemma: With R  denoting an arbitrary positive definite 

nn ×  matrix, 

)()( 00 wwRww −− T  (8) 

subject to the constraint ,xtwX =  is minimised by 

.)ˆ()( 111
0 xx

TT ttXRXXRww −+= −−−  

Proof: Introducing the  1×J  vector λ  of Lagrange 
multipliers, we get after differentiation the equation system 

0)(2 0 =+− λTXwwR  (9) 

0=− xtWX  (10) 

Multiplying (9) by ,1−XR  using (10) and solving for ,λ  
yields with :ˆ

0 xtwX =  

.)ˆ()(2 11
xx

T ttXRX −= −−λ  (11) 

Putting this into (9) and solving for w  finally leads to 

.)ˆ()( 111
0 xx

TT ttXRXXRww −+= −−−  

From the lemma we thus have the following main result:  
Theorem: With optR  being positive (semi –) definite and 
using the optimal calibration distance-measure, which we 
get by letting )( opt

1
opt

−−= RRR  in (8), the calibration 
estimator will become the optimal regression estimator.  
Remark: optR  may in some cases be indefinite (see below). 
The only thing we know is that it is an unbiased estimator of 
a covariance matrix. If it is not positive semi-definite there 
also exist x – values such that TXRX opt  is not positive 
semi-definite, but the probability of such x – values goes to 
zero as the population and sample sizes increase (and if 

xx,∑  is positive definite). A strict minimisation of a 
distance with “a negative component” would lead to 
infinitely large corrections. This problem of the optimal 
estimator has, to our knowledge, not been pointed out 
previously. 

The simplest way to find a distance which gives the 
optimal estimator as a calibration estimator is to find a 
matrix distR  which has the same eigenvectors as optR  but 
where the eigenvalues are replaced by their absolute values. 
(This result can be shown along the same lines as the proof 
of the lemma above. The distance can be seen as the sum of 
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the products of the eigenvalues and the squared 
eigenvectors. Putting the derivatives equal to zero means 
that in the proposition we found the extremes i.e., the 
minima for positive eigenvalues and the maxima for 
negative eigenvalues. By changing all negative signs the 
extremes will all be minima). 

 
4. Examples  

Positive definite optR : Suppose that the objects in U  are 
independently drawn with inclusion probabilities 

Nππ ...,,1  (Poisson sampling); thus implying a random 
sample size ,n  where .][ iUinE π∑= ∈  Due to the 
independence of drawings, optR  is diagonal and specifically 
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Positive semi-definite optR : Suppose n  objects are drawn 
according to simple random sampling, i.e., each object has 
inclusion probability ./ Nni =π  The elements of optR  are 
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This means that optR  is singular with rank .1−n  
Suppose instead (as in the following simulation study) 

that U  is partitioned into L  strata of sizes ,...,,1 LNN  
from which we draw independent simple random samples 
of sizes ....,,1 Lnn  The elements of optR  then are 
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when in the latter case i  and j  both belong to stratum 
Lhh ...,,1, =  and 0 otherwise. Therefore optR  has rank 

.hN −  
Non positive semi-definite optR : Let U  consist of four 
elements and s of two elements. Suppose that a systematic 
sample is taken with probability 0.94 and a simple random 
sample with probability 0.06, i.e., 48.02413 =π=π  and 

.01.034231412 =π=π=π=π  In that case 

⎟⎟
⎠

⎞
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⎝

⎛=
212/23

12/232
optR  (12) 

with probability 0.96 and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

296

962
optR  (13) 

with probability 0.04. The second matrix has a negative 
eigenvalue.  

The problem does not necessarily disappear if N  is 
large. Consider instead a population consisting of 4/N  
strata with four elements each. Suppose that the above 
sampling procedure is used independently in each stratum. 
In that case optR  will consist of a matrix with the above 

22 × – matrices along the diagonal and zeroes elsewhere. 

 
5. A Simulation Study  

5.1 Notation and Outline  
In order to make empirical comparisons between the 

optimal estimator (OPT) and the GREG estimator (GREG) 
and also compare these estimators with the Horvitz-
Thompson estimator (HT), we have conducted a small 
simulation study. In the previous sections we mentioned that 
OPT is Best Linear Asymptotic Efficient and a calibration 
estimator. Even though it has many nice properties it may 
for reasonable sample sizes be inefficient. Here we will in 
some simulated situations show that the optimal estimator 
can be a substantial improvement compared to GREG also 
for moderate sample sizes when the population is 
(deliberately) chosen to be unfavourable for GREG. A 
simple but non-trivial situation for which OPT is not equal 
to GREG arises for stratified simple random sampling, in 
particular, when the slopes differ between the different 
strata and the unstratified population. Consider therefore a 
population of size ,N  which is partitioned into L  strata of 
sizes ....,,1 LNN  From each stratum h  a simple random 
sample hs  of size hn  is drawn, where sss L =+ ...1  and 

....1 nnn L =++  For simplicity we further assume that the 
auxiliary information is one-dimensional and global, i.e., 
only xt  is known beforehand. For GREG we have chosen 
the homoscedastic simple linear regression model, see 
Särndal et al. (1992). 

The resulting expressions for HT, OPT and GREG 
respectively are  
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It is easily seen from these formulae  that the optimal 
regression coefficient is the mean of the within stratum 
slopes and that the GREG regression coefficient is the 
global slope. When there is a large difference between these 
slopes the GREG correction becomes bad. We are here 
particularly interested in comparing the qualities of these 
estimators when the assisting (linear) model for GREG fails. 
We have thus generated −x  and −y values from 
correlated lognormally distributed random variables X  and 

,Y  where ln X  is normally distributed with expectation 0 
and variance )),0(( 1

2
1 σσ N  and lnY  is .),0( 2σN  The 

variances 2
1σ  and 2

2σ  and the correlation between ln X  and 
lnY  can then be chosen to obtain prespecified values of the 
variances 2

xσ  of X  and 2
yσ  of Y  and their correlation 

.),( YXρ  Values generated from bivariate normal 
distributions were obtained by MATLAB (version 6.0). 
Twelve populations have in this manner been created, each 
of size N  = 10,000, including four combinations of 
variances 2

xσ  and 2
yσ  (10 and 100) and three values of the 

correlation ),( YXρ  (0.5, 0.7 and 0.9). For these 
populations a variance of 10 implies a skewness of 9.37 and 
the variance 100 leads to skewness 38.59.  

Now, before stratification, the objects of each population 
are ordered with respect to ascending −y values. The 
number of strata is 5=L  throughout with sizes 

,000,41 =N  000,1,000,2,500,2 432 === NNN  and 
.5005 =N  These strata are constructed in such a way that 

objects with the smallest −y values constitute stratum 1, 
and so forth. From each stratified population we have drawn 
samples of sizes 000,1,250=n  and 2,500, where for each 
sample .... 51 nn ==  This means that we have created an 
approximate psπ  (probability proportional to size) design, 
with for example, objects in stratum 5 having the largest 
inclusion probability .)/( 55 Nn  The number of simulated 
samples was =K 25,000 for each of the 36312 =×  cases 
and HT, OPT and GREG were then computed for each 
sample. 

In general, common measures of quality for an estimator 
t̂  of a total t  from a sequence Ltt ˆ...,,1̂  are the estimated 
relative bias 

t

tt −ˆ
 

and the estimated variance 

,)ˆˆ(
1

1

1

22 ∑
=

−
−

=
K

i
i tt

K
S  

where .ˆ)/1(ˆ 1 i
K
i tKt =∑=  

Since we are mainly concerned with comparisons of 
OPT and GREG, we will only display results of the relative 
measures of variance (or equivalently standard deviation) 

,and
2

HT

2

2
HT

2
opt

y

ry

y

y

S

S

S

S
 

from which we can compare the estimated variances of OPT 
and GREG with HT and also determine which of OPT and 
GREG have the lowest estimated variance.  
5.2 Results  

Firstly, as reference, the absolute value of the estimated 
relative bias of the unbiased HT did not in any case exceed 

.104 4−⋅  The corresponding maximum values for OPT and 
GREG were ,106 3−⋅  which means that we may concentrate 
on the ratios of estimated variances in order to evaluate 
relative efficiencies of HT, OPT and GREG. 

As seen from Table 1, OPT is superior to both HT and 
GREG (with one exception: ,10,9.0),( 2 =σ=ρ xYX  

1002 =σ y  and ,250=n  where GREG has slighly less 
estimated variance). For the lowest correlation though, the 
decrease in estimated variance for OPT compared with HT 
is not substantial. GREG on the other hand does not 
compete well with the others and this anomaly is 
particularly accentuated for the largest sample size 

.500,2=n  Changing ),( YXρ  to 0.7 means improvement 
for both OPT and GREG, but GREG is also now for most 
cases inferior to HT. Finally, for 9.0),( =ρ YX  GREG still 
displays poor behavior compared with HT for 500,2=n  
(with the exception of 1002 =σ x  and .)102 =σ y  In general 
GREG is closing in on OPT for increasing values of 

),( YXρ  (the assisting linear model becoming less 
misspecified), while OPT, on the other hand, is increasing 
its superiority over GREG for increasing sample sizes, 
which should come as no surprise since OPT is 
asymptotically well motivated. 
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Table 1 
Relative Estimated Efficiencies (Given as Percentages) of OPT )/( 2

HT
2

opt yy SS  and GREG )/( 2
HT

2
yry SS  to HT,  

Based on 25,000 Simulated Samples for Each Sample Size 
 

 102 =σx  102 =σx  1002 =σx  1002 =σx  

 102 =σ y  1002 =σ y  102 =σ y  1002 =σ y  

 OPT GREG OPT GREG OPT GREG OPT GREG 
5.0),( =ρ YX          

250=n  99.1 232.8 97.4 176.8 93.9 179.4 91.4 122.3 

000,1=n  98.3 247.1 98.0 193.7 97.5 183.5 99.9 141.9 

500,2=n  96.8 756.7 96.8 1,455.0 97.8 534.7 96.8 1,625.5 

7.0),( =ρ YX          

250=n  89.7 197.6 83.8 101.2 73.6 120.4 64.3 72.9 

000,1=n  91.0 227.5 89.8 117.2 81.2 120.5 71.7 84.0 

500,2=n  93.8 648.2 91.5 1,308.6 93.1 218.6 93.1 673.5 

9.0),( =ρ YX          

250=n  56.5 76.1 41.2 38.8 27.2 43.4 40.4 41.4 

000,1=n  61.8 87.3 44.1 44.2 27.6 44.1 41.5 45.4 

500,2=n  77.0 237.4 59.8 335.4 63.6 66.0 74.6 259.8 
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Approximations to *b  in the Prediction of Design Effects  
Due to Clustering 

Peter Lynn and Siegfried Gabler 1 

Abstract 

Kish’s well-known expression for the design effect due to clustering is often used to inform sample design, using an 

approximation such as b  in place of b. If the design involves either weighting or variation in cluster sample sizes, this can 
be a poor approximation. In this article we discuss the sensitivity of the approximation to departures from the implicit 
assumptions and propose an alternative approximation. 
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1. Alternative Functions  
     of Cluster Size  

Kish (1965) used an expression for the design effect 
(variance inflation factor) due to sample clustering, 

ρ−+= )1(1deff b , where b is the number of observations 
in each cluster (primary sampling unit) and ρ  is the 
intracluster correlation coefficient.  This expression is well-
known, is taught on courses on sampling theory, and is used 
by survey practitioners in designing and evaluating samples. 

The expression holds when there is no variation in cluster 
sample size and the design is equal-probability (self-
weighting).  We can express these two criteria formally: 

cc bb ∀=  (1) 

where Cc ...,,1=  denote the clusters, and 

iwwi ∀=  (2) 

where Ii ...,,1=  denote the weighting classes, with iw  the 
associated design weights. 

However, most surveys involve departures from (1) and 
(2). In the general case, i.e., removing restrictions (1) and 
(2), Gabler, Häder and Lahiri (1999) showed that under an 
appropriate model, ,)1(1deff * ρ−+= bc  where 
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and cib  is the number of observations in weighting class i in 
cluster ∑ == C

c cii bbc 1,  (we have changed the notation from 
that of Gabler et al. (1999), to provide consistency) and cjw  
is the weight associated with the thj  observation in cluster 

....,,1, cbjc =  
The quantity *b  can be calculated from survey micro-

data, provided the design weight and cluster membership is 
known for each observation. However, at the sample design 
stage it is not clear how *b  can be predicted. Gabler et  al. 

(1999) interpreted Kish’s b  as a form of weighted average 
cluster size: 
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(4)

 

where cb  is the number of observations in cluster 
∑ == I

i cic bbc 1 .,  However, (4) is no easier than (3) to 
predict at the sample design stage. A simpler interpretation, 
perhaps commonly used in sample design, is the 
unweighted mean cluster size: 

.
1

CmCbb
C

c
c == ∑

=
 (5) 

It is much easier to predict b  at the sample design stage 
than either wb  or ,*b  as it requires knowledge only of the 
total number of observations, ,m  and total number of 
clusters, .C  

 
2. Relationship Between w

* b,b  and b  
      Under Alternative Assumptions  

Let 

,
1

11 c

ci
I

i
i

b

j
cj

c
c b

b
ww

b
w

c

∑∑
==

==  

2

1
2

1

222 1
),(Cov c

C

c
c

C

c
ccccc wb

C

m
wb

C
wbb ∑∑

==
−=  

and 



102 Lynn and Gabler: Approximations to *b  in the Prediction of Design Effects Due to Clustering 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

.)(

)(
1

)(Var

2

1

2

1

cww
b

b

ww
b

w

ci

I

i c

ci

ccj

b

jc
cj

c

∀−=

−=

∑

∑

=

=  

Then 

.
)(Var

),(Cov

1 1

2

1

22

*

∑ ∑

∑

= =

=

+⋅

+⋅
=

C

c

C

c
cccjc

C

c
ccccc

wbwb

wbbwbbC

b  (6) 

If (1) holds, then (6) becomes: 
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So, in that circumstance, .* bb ≤  If, additionally, weights 
are equal within clusters, viz: 

cjww ccj ∈∀=  (8) 

then bb =* . 
If (8) holds, but not (1), then  

bb ≥*  if and only if 0),(Cov 2 ≥ccc wbb  

since  .
),(Cov

1

2

2
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∑
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⋅=−
C

c
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wb

wbbC
bb  

The covariance would be negative only if small cluster 
sizes coincide with large average weights within the clusters 
and vice versa. In section 4 below, we observe that this did 
not occur in any country on round 1 of the European Social 
Survey. Furthermore, from (3) and (4), we have: 
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If we additionally impose the restriction (1), then we 
have the obvious result .* cbbbb cw ∀===  

The result in (9) would apply to surveys where the only 
variation in selection probabilities was due to dispropor-
tionate sampling between domains that did not cross-cut 
clusters. A common example would involve dispropor-
tionate stratification by region, with PSUs consisting of 
geographical areas hierarchical to regions. 

A practical relaxation of the restriction on the variation in 
weights is: 
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In other words, we allow variation in weights within 
clusters, but we constrain the weights to have the same 
relative frequency distribution in each cluster, i.e., the 
means and the variances of the weights within clusters do 
not depend on the clusters. 

Now, (3) simplifies as follows: 
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Note that ),1(//))(( 2
1

22
1 w

I
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i ii cmbwbw +=∑∑ ==  

where 2
wc  is the squared coefficient of variation, across all 

observations, of the weights. Also, =∑ =
2

1
2 /)( mbC

c c  
,/)1( 2 Ccb+  where 2

bc  is the squared coefficient of 
variation, across all clusters, of the cluster sample sizes.  
Thus, (11) becomes: 
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So, b  will underestimate *b  if 22
wb cc >  and vice versa. 

In particular, if cjwwcj ,∀=  and ,02 >bc  then .* bb >  The 
greater the variation in ,cb  the greater the extent to which 
b  will under-estimate .*b  

Assumption (10) will rarely hold exactly, but this result 
might be useful in situations where the distribution of 
weights is expected to be similar across clusters. An 
example might be address-based samples where one person 
is selected per address. If the distribution of the number of 
persons per address is approximately constant across PSUs 
(in the population), then the distribution of weights will vary 
across clusters in the sample only due to sampling variation 
and disproportionate nonresponse (the effect of this could, 
of course, be substantial if cluster sample sizes are small). 

If no restriction is imposed on the variation in weights, 
but 0)Var( >cjw  for at least one ,c  then, from (6), 

bb ≥*  if and only if .1
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If (10) holds, then ./ 22
wb cc=ζ  

 
3. Implications for Sample Design  

Expression (12) suggests that *b  may be predicted by 
predicting the relative magnitudes of 2

bc  and .2
wc  However, 

this result applies to a special situation, where 
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When this covariance is expected to be small, it may be 
appropriate to predict *b  thus: 
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Both coefficients of variation can be estimated from 
knowledge of the proposed sample design. In the following 
section, we investigate sensitivity of predictions obtained in 
this way to assumption (10) using real data from different 
sample designs with .0),(Cov >ccj bw  

4. Example: European Social Survey  
The European Social Survey (ESS) is a cross-national 

survey for which great efforts have been made to achieve 
approximate functional equivalence in sample design 
between participating nations (Lynn, Häder, Gabler and 
Laaksonen 2004). Nevertheless, there is considerable vari-
ety in the types of design used, primarily due to variation in 
the nature of available frames and in local objectives, such 
as a desire for sub-national analysis which may lead to 
disproportionate stratification by domain. We use here data 
from the first round of the ESS, for which fieldwork was 
carried out in 2002 – 2003. Of the 22 participating nations, 
17 had a clustered sample design. Of these, two had not yet 
provided useable sample data at the time of writing. In 
Table 1 we present the sample values of ,*b  ,b  ,2

bc  ,2
wc  

,),(Corr,|||,|, **
ccj bwbbbbb −−

tt
 and ζ  for the 

remaining 15. Note that the United Kingdom and Poland 
both had a 2 – domain design with the sample clustered only 
in one domain, namely Great Britain (i.e., excluding 
Northern Ireland) and less densely-populated areas (i.e., all 
except the largest 42 towns) respectively. Figures presented 
in table 1 relate only to the clustered domain. 

 

 
Table 1 

Sample Values of 15for,and),,(Corr,||,||,,,, **22* ζ−− ccjwb bwbbbbbccbb
tt

 Surveys 
 

Country  *b  b  2
bc  2

wc  b
t

 || *bb −
t

 
|| *bb −
 

),(Corr ccj bw

 

ζ

 Austria AT 6.49 7.08 0.08 0.25 6.15 0.34  0.58  0.0036 0.4549 

Belgium BE 6.56 5.79 0.13 0.00 6.56 0.00  0.77  . . 

Switzerland CH 8.83 9.23 0.12 0.21 8.50 0.34  0.40  0.0223 0.7060 

Czech Republic CZ 2.94 2.70 0.24 0.25 2.68 0.26  0.24  0.0225 1.7350 

Germany DE 18.85 18.13 0.07 0.11 17.42 1.43  0.72  – 0.2287 . 

Spain ES 4.96 5.04 0.17 0.22 4.80 0.15  0.08  – 0.0767 0.8757 

Great Britain GB 11.11 12.27 0.08 0.22 10.90 0.21  1.16  0.0114 0.4198 

Greece GR 5.47 5.86 0.09 0.22 5.25 0.22  0.39  – 0.0280 0.5207 

Hungary HU 8.68 8.18 0.06 0.00 8.68 0.00  0.50  . . 

Ireland IE 12.09 11.18 0.13 0.04 12.05 0.05  0.91  0.0006 3.1054 

Israël IL 11.79 12.82 0.12 0.56 9.27 2.53  1.02  – 0.1271 0.4401 

Italy IT 10.98 10.87 0.26 0.16 11.80 0.83  0.10  – 0.5589 1.3018 

Norway NO 44.09 18.68 1.33 0.01 43.32 0.77  25.41  0.0807 . 

Poland (rural) PL  10.07 9.45 0.06 0.01 9.88 0.19  0.62  0.2923 . 

Slovenia SI 10.76 10.13 0.06 0.00 10.76 0.00  0.63  . . 
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From (12), we would expect to observe *bb >  when 
.ˆˆ 22

bw cc >  A common sample design for which this 
inequality can be anticipated is one where, a) the selected 
cluster sample size is constant, so variation in bc will be 
limited to that caused by differential non-response; and b) 
the samples are equal-probability samples of addresses, with 
subsequent random selection of one person per address, 
leading to variation in design weights reflecting the 
variation in household size. There are six nations with 
sample designs of this type (AT, CH, ES, GB, GR, IL). It is 
indeed the case that for all of these nations, 1<ζ  and 

.*bb >  Furthermore, for 5 of these 6 nations (AT, CH, ES, 
GB, GR, )5...,,1=h  we might expect (10) to be a 
reasonable approximation as the only variation in weights is 
that due to selection within a household/address. For these, 
we might expect b̂

t
 to perform better than .b  Indeed, 

|||| ** bbbb −<−
t

 for 4 of the 5, and /)||( 5
1

*∑ = −h bb
t

 
.48.0||5

1
* =−∑ =h bb  The one nation where b̂

t
 would not 

provide an improvement is Spain and this is to be expected 
as b  is small. Small cluster sample sizes leave them 
relatively more susceptible to the effects of nonresponse and 
also sampling variance, which will lead to violation of (10). 
In Israel, there was a further source of variation in design 
weights as there was disproportionate stratification by 
geographical areas. This too causes violation of (10), so we 
would not expect b̂

t
 necessarily to provide an improvement 

on b  as a predictor of .*b  
Of the nations where 22

wb cc < , there is only one (CZ) for 
which *bb <  and 1>ζ . This is also the nation with the 
smallest value of b  When cluster sample sizes are 
particularly small, deff will be small and the choice between 
estimators of *b  may be less important. 

There are five nations where sample units were 
individuals selected with equal probabilities (within 
clusters) from population registers (BE, DE, HU, PL, SI). In 
this case (8) (and, therefore, (10)) holds strictly, so we have 

.*bb <  For three of these nations (BE, HU, SI) the sample 
is equal-probability, so we observe .*bb =

t
 It is clear that b̂

t
 

is superior to b  for equal-probability samples. For 
Germany and Poland, there is some variation in design 
weights between clusters (but not within). This variation is 
modest in Poland, and ,|||| ** bbbb −<−

t
 but the same is 

not true in Germany, where the ex-East Germany was 
sampled at a considerably higher rate than the ex-West 
Germany. 

The Norwegian sample design was the only one that 
resulted in considerable variation in cluster sample sizes at 
the selection stage. The dramatic impact of this on *bb −  
can clearly be seen. Again, this is a situation in which b̂

t
 is 

likely to be preferable to b  as a predictor of .*b  
The designs in Ireland and Italy both involved selecting 

addresses from the electoral registers with probability 

proportional to number of electors and then selecting one 
resident at random from each selected address. Such designs 
are not equal-probability, but are likely to result in 
considerably less variation in design weights than the 
address-based sample designs discussed earlier (Lynn and 
Pisati 2005). In both these cases, ,ˆˆ 22

bw cc <  the difference 
being greater in the case of Italy where some cluster sample 
sizes (in the largest municipalities) were considerably larger 
than the others (in Ireland, all were equal at the selection 
stage). Aside from the Czech Republic, these are the only 
two nations with 1>ζ . 

 
5. Conclusion  

To aid prediction of the design effect due to clustering, 
we believe that b̂

t
 is likely to be a better choice than b̂  as a 

predictor of *b  in situations where it can reasonably be 
expected that (10) will approximately hold. This includes, 
but is not restricted to, the following common types of 
sample design:  

− Equal-probability designs where cluster sample sizes 
vary by design; 

 

− Equal-probability designs where clusters do not vary 
by design but are likely to vary due to nonresponse; 

 

− Address-based samples where one person is selected 
at each address, there is no other significant source of 
variation in selection probabilities, and cluster sizes 
do not vary by design. 
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Abstract 
 

Nested error regression models are frequently used in small-area estimation and related problems. Standard regression 
model selection criterion, when applied to nested error regression models, may result in inefficient model selection methods. 
We illustrate this point by examining the performance of the PC  statistic through a Monte Carlo simulation study. The 
inefficiency of the PC  statistic may, however, be rectified by a suitable transformation of the data. 
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1. Introduction  
This paper examines the limitations of a standard 

regression model selection criterion, PC  the statistic, for 
nested error regression models. The PC  statistic (Mallows 
1973) is defined by 

pnC P
P 2

ˆ

RSS
2

+−
σ

=  (1) 

where PRSS  is the residual sum of squares and p is the 
number of parameters for model P, n is the number of 
observations and 2σ̂  is an estimate of .2σ  If the model is 
correct, the value of PC  should be similar to or smaller than 
p. The PC  model selection criterion is sensitive to outliers 
and departures from the normal i.i.d. assumption on the 
errors. The PC  statistic therefore cannot be directly applied 
to the nested error regression model since here the error 
structure is not i.i.d. 

We propose a transformation that adjusts for intracluster 
correlation and allows use of the standard PC  model 
selection criterion. The method presented in this paper can 
be applied to select covariates in the analysis of complex 
survey data and small-area models. For example, our 
technique could be used to select covariates in the nested 
error regression model used by Battese, Harter and Fuller 
(1988) to estimate the area planted (in hectacres) with corn 
or soybeans for twelve Iowa counties. They used the 
following model: 

,ijiijij evxy ++β′=  (2) 

for unit inj ,,1 K=  in county ,,,1 mi K=  where in  is the 
sample size for small area i and the total sample size is 

∑ == m
i inn 1 .  The county effects, ,iv  are distributed as 

),0( 2
vN σ  independent of the random errors ,ije  which are 

distributed as ).,0( 2
eN σ  The area (in hectacres) in unit j of 

county i is denoted by ijy  and ),,,1( 1 ijpijij xxx K=  is a 

1+p  vector of the values of the covariates pxx ,,1 K  for 
unit j in county i. The vector ),,,( 10 ′βββ=β pK  is a 

1+p  vector of unknown parameters. 
The nested error regression model can be expressed in 

matrix form as 

ε+β= Xy  (3) 

where ,),,(),,,(,),,( 111 ′ε′ε′=ε=′′′′= miniim i
yyyyyy KKK  

.,),,( 1 ijiijinii ev
i

+=ε′εε=ε K  Further, ),,( 1 mXXX ′′=′ K  
where iX  is an )1( +× pni  matrix with rows ijx  for 

),0(~,,,1 2VNnj i σε= K  where Vev ,222 σ+σ=σ  has 
block-diagonal form i

m V1⊕  with 
ii nni JIV ρ+ρ−= )1(  

where 22 / σσ=ρ v  is the common instrastratum correlation, 

inI  is the ii nn ×  identity matrix and 
inJ  is the ii nn ×  unit 

matrix. 
Since the nested error model does not have i.i.d errors, 

standard regression procedures do not apply. The simulation 
study in section 3 reveals that the PC  criterion does not 
perform well under the nested error regression model. The 
transformations considered in the next section are used to 
transform the nested error regression model into a standard 
regression model with i.i.d. errors. With these transformed 
observations, the PC  criterion performs much better. 

 
2. Adjusting for Intra-area Correlations 

  
As noted in the previous section, conventional model 

selection methods like the PC  criterion are not appropriate 
since the instrastratum correlations are ignored. Wu, Holt 
and Holmes (1988) and Rao, Sutradhar and Yue (1993) 
studied the effect of conventional methods for the nested 
error regression model in a different context. 

Consider the nested error regression model and let 
222
ev σ+σ=σ  and ρ  be the common intra-area correlation, 

./ 22 σσ=ρ v  As in Fuller and Battese (1973) and Rao et al.  
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(1993), transform the nested error regression model into a 
standard regression model with i.i.d. errors. 

Let 

,
)1(1

1
1

2/1

⎥
⎦

⎤
⎢
⎣

⎡
ρ−+

ρ−−=α
i

i n
 (4) 

,*
iiijij yyy α−=  (5) 

,*
iiijij xxx α−=  (6) 

where ∑ == in
j iiji nyy 1 /  and ∑ == in

j iiji nxx 1 ./  The trans-
formed model then becomes 

,***
ijijij exy +β=  (7) 

for minj i ,,1,,,1 KK ==  and *
ije  are independently dis-

tributed as ).,0( 2
eN σ  Now, the standard PC  model 

selection criterion may be applied to the transformed data. 
In practice, ρ  is usually unknown and must be estimated 

from the data. Rao et al. (1993) used Henderson’s (1953) 
method to obtain unbiased quadratic estimators 2ˆ vσ  and 2ˆ eσ  
of the variance components 2

vσ  and .2
eσ  Once the 

estimators have been obtained, )/( 222
evv σ+σσ=ρ  may be 

estimated by 

.
ˆˆ

ˆ
,0maxˆ

22

2

⎥
⎦

⎤
⎢
⎣

⎡
σ+σ

σ=ρ
ev

v  (8) 

To obtain the estimators of the variance components, let 
}{ iju  be the residuals from the ordinary least squares 

regression of }{ .iij yy −  on },,{ .1.1 piijpiij xxxx −− K  with-
out the intercept term, where iijl

n
jli nxx i /1. ∑ ==  for 

.,,1 pl K=  Let }{ ijr  be the residuals from the ordinary 

least squares regression of ijy  on },,{ 0 ijpij xx K  with the 
intercept term. 

The estimators of 2
vσ  and 2

eσ  are given by 

,)1(ˆ 2

11

12
ij

n

j

m

i
e epmn

i

∑∑
==

−λ−−−−=σ  (9) 

,ˆ)1(ˆ 22

11

1
*

2
⎥
⎦

⎤
⎢
⎣

⎡
σ−−−=σ ∑∑

==

−
eij

n

j

m

i
v pnrn

i

 (10) 

⎥
⎦

⎤
⎢
⎣

⎡ ′′−= ∑
=

−
..

2

1

1
* )( iii

m

i

xxnXXtrnn  (11) 

where 0=λ  if the model has no intercept term and 1=λ  
otherwise. We propose to apply standard PC  model 
selection criterion on these transformed observations *

ijy  
and .*

ijx  

 
3. A Simulation Study  

A simulation study was conducted to examine the 
behavior of the PC  model selection criterion and the 
proposed transformations for the nested error regression 
model. The following model was considered: 

ijiijijijijijij evxxxxxy ++β+β+β+β+β= 4433221100  (12) 

for },5,,2{,10,,1 KK ∈= ini  inj ,,1 K=  and 40=n . 
The iv  are distributed as ),0( 2

vN σ  independent of ije  
which are distributed as ).1,0(N  The data ijlx  are taken 
from an example given by Gunst and Mason (1980) and 
included in Shao (1993) (Table 1). The value of 0ijx  is 1 for 
all .,,1,10,,1 inji KK ==   

 
 
 

Table 1 
Data for Nested Error Simulation 

 

1x  2x  3x  4x  1x  2x  3x  4x  

0.3600 0.5300 1.0600 0.5326 0.0900 0.1800 0.5900 0.1855 
1.3200 2.5200 5.7400 3.6183 0.0200 0.1600 0.2400 0.1572 
0.0600 0.0900 0.2700 0.2594 0.0200 0.1100 0.2100 0.0998 
0.1600 0.4100 0.8300 1.0346 0.0500 0.2400 0.4300 0.2804 
0.0100 0.0200 0.0700 0.0381 0.1100 0.3900 0.2900 0.2879 
0.0200 0.0700 0.0700 0.3440 0.1800 0.1100 0.4300 0.6810 
0.5600 0.6200 2.1200 1.4559 0.0400 0.0900 0.2300 0.3242 
0.9800 1.0600 2.8900 4.0182 0.8500 1.3300 2.7000 2.6013 
0.3200 0.2000 0.7600 0.4600 0.1700 0.3200 0.6600 0.4469 
0.0100 0.0000 0.0700 0.1540 0.0800 0.1200 0.4900 0.2436 
0.1500 0.2500 0.5000 0.6516 0.3800 0.1800 0.4900 0.4400 
0.2400 0.2800 0.5900 0.0611 0.1100 0.1300 0.1800 0.3351 
0.1100 0.3500 0.4000 0.1922 0.3900 0.3800 0.9900 1.3979 
0.0800 0.1300 0.2800 0.0931 0.4300 0.4600 1.4700 2.0138 
0.6100 0.8500 0.4900 0.0538 0.5700 1.1600 1.8200 1.9356 
0.0300 0.0300 0.2300 0.0199 0.1300 0.0300 0.0800 0.1050 
0.0600 0.1100 0.5000 0.0419 0.0400 0.0500 0.1400 0.2207 
0.0200 0.0800 0.2500 0.1093 0.1300 0.1800 0.2800 0.0180 
0.0400 0.2400 0.0800 0.0328 0.2000 0.9500 0.4100 0.1017 
0.0000 0.0200 0.0400 0.0797 0.0700 0.0600 0.1800 0.0962 
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Some of the kβ  may be zero and thus various 
combinations of variables were chosen from 

),,,,( 43210 xxxxx  to be the predictors used to generate data 
coming from a nested error regression model. There are 

3112 =−p  possible models. Each model will be denoted 
by a subset of (0, 1, 2, 3, 4) that contains the indices of the 
variables lx  in the model. 

Data were generated using 1,000 simulations for several 
values of 2

vσ  to estimate the probability of selecting each 
model using the PC  criterion. The value of 2

eσ  was taken to 
be 1 for all simulations. The results of the simulation are 
given in Table 2. The values of 2

vσ  considered were 0, 1, 2, 

5, 10 and 16 and the values of β′  were taken to be (2, 0, 0, 
4, 0), (2, 0, 0, 4, 8), (2, 9, 0, 4, 8) and (2, 9, 6, 4, 8) as in 
Shao (1993). Models were categorized as optimal, category 
II (correct but not optimal), or category I (incorrect). 

The PC  criterion did not perform well for large values of 
.2

vσ  For the model =β′ (2, 0, 0, 4, 0) with 12 =σv  the 
estimated selection probabilities were: optimal model, 0.54; 
correct model, 0.46; incorrect model, 0. In contrast, when 

,162 =σv  the estimated selection probabilities were: optimal 
model, 0.43; correct model, 0.35; incorrect model, 0.22. 

The PC  criterion also did not perform well for larger 
models with large  values of .2

vσ  The PC  criterion however   
Table 2 

Probabilities of Model Selection Before Transformation 
 

)0,4,0,0,2( ′=β  

Model Category 02 =σv  12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  
0, 3 Optimal 0.62 0.54 0.49 0.46 0.45 0.43 
0, 2, 3 II 0.11 0.09 0.09 0.10 0.07 0.06 
0, 1, 3 II 0.09 0.14 0.19 0.17 0.15 0.12 
0, 3, 4 II 0.09 0.13 0.13 0.14 0.11 0.10 
0, 1, 2, 3 II 0.03 0.05 0.06 0.05 0.04 0.04 
0, 1, 3, 4 II 0.02 0.03 0.02 0.02 0.02 0.01 
0, 2, 3, 4 II 0.02 0.01 0.02 0.02 0.01 0.02 
0, 1, 2, 3, 4 II 0.02 0.01 0.00 0.00 0.01 0.00 
0, 1 I 0.00 0.00 0.00 0.01 0.07 0.09 
0, 2 I 0.00 0.00 0.00 0.01 0.03 0.05 
0, 4 I 0.00 0.00 0.00 0.00 0.01 0.04 
0, 1, 2 I 0.00 0.00 0.00 0.01 0.01 0.01 
0, 1, 4 I 0.00 0.00 0.00 0.01 0.02 0.03 
0, 1, 2, 4 I 0.00 0.00 0.00 0.00 0.00 0.00 

)8,4,0,0,2( ′=β  

Model Category 02 =σv  12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  
0, 3, 4 Optimal 0.72 0.67 0.63 0.61 0.58 0.49 
0, 2, 3, 4 II 0.12 0.12 0.14 0.14 0.11 0.09 
0, 1, 3, 4 II 0.12 0.16 0.18 0.14 0.12 0.11 
0, 1, 2, 3, 4 II 0.04 0.05 0.05 0.05 0.04 0.04 
0, 4 I 0.00 0.00 0.00 0.00 0.01 0.06 
0, 1, 4 I 0.00 0.00 0.00 0.02 0.05 0.10 
0, 2, 4 I 0.00 0.00 0.00 0.03 0.07 0.10 
0, 1, 2, 4 I 0.00 0.00 0.00 0.00 0.01 0.01 

)8,4,0,9,2( ′=β  

Model Category 02 =σv  12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  
0, 1, 3, 4 Optimal 0.83 0.78 0.75 0.63 0.39 0.25 
0, 1, 2, 3, 4 II 0.17 0.20 0.18 0.13 0.09 0.07 
0, 3, 4 I 0.00 0.01 0.03 0.13 0.29 0.35 
0, 1, 4 I 0.00 0.00 0.00 0.03 0.11 0.15 
0, 2, 3, 4 I 0.00 0.01 0.03 0.07 0.06 0.09 
0, 2, 4 I 0.00 0.00 0.00 0.00 0.02 0.05 
0, 1, 2, 4 I 0.00 0.00 0.00 0.02 0.04 0.04 

)8,4,6,9,2( ′=β  

Model Category 02 =σv  12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  
0, 1, 2, 3, 4 Optimal 1.00 0.98 0.90 0.60 0.29 0.11 
0, 2, 3, 4 I 0.00 0.02 0.07 0.24 0.32 0.28 
0, 1, 3, 4 I 0.00 0.00 0.02 0.11 0.18 0.23 
0, 1, 2, 4 I 0.00 0.00 0.01 0.06 0.13 0.17 
0, 3, 4 I 0.00 0.00 0.00 0.00 0.03 0.09 
0, 2, 4 I 0.00 0.00 0.00 0.00 0.03 0.10 
0, 1, 4 I 0.00 0.00 0.00 0.00 0.01 0.03 
0, 1, 3 I 0.00 0.00 0.00 0.00 0.00 0.00  
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did very well for large models with small values of .2
vσ  For 

the full model =β′ (2, 9, 6, 4, 8) with ,12 =σv  the estimated 
selection probabilities were: optimal model, 0.98; correct 
model, 0.02; incorrect model, 0. In contrast, when ,162 =σv  
the estimated selection probabilities were: optimal model, 
0.11; incorrect model, 0.89. Note that in this scenario there 
are no correct models other than the optimal model. 

In summary, when the PC  criterion is applied to data 
following the nested error regression model:   

1. For any particular model, the estimated probability 
of selecting the optimal model decreases as 2

vσ  
increases.  

2. For any particular model, the estimated probability 
of selecting an incorrect model increases as 2

vσ  
increases.  

3. As the number of variables included in the model 
increases and 2

vσ  increases, the estimated proba-
bility of selecting the optimal model decreases.  

4. As the number of variables included in the model 
increases and 2

vσ  increases, the estimated 
probability of selecting an incorrect model 
increases.  

The data were then used to estimate the probability of 
selecting each model using the PC  criterion under the 
transformation for ρ  known. The results of the simulation 
are given in Table 3. For the model )0,4,0,0,2(=β′  with 

02 =σv  (standard regression model) the estimated selection 
probabilities were: optimal model, 0.62; correct model, 
0.38; incorrect model, 0 (Table 2). Similarly, under the 
transformation for ρ  known with ,162 =σv  the estimated 
selection probabilities were: optimal model, 0.60; correct 
model, 0.40; incorrect model, 0 (Table 3). For the full model 

=β′ (2, 9, 6, 4, 8), the estimated probability of selecting the 
optimal model was 1 for both the standard regression model 
(Table 2, )02 =σv  and under the transformation for ρ  
known for all values of 2

vσ  considered (Table 3).  
In practice, ρ  is unknown and must be estimated from 

the data. The transformation for ρ  unknown is therefore 
more helpful for practitioners. The results for the trans-
formation with ρ  unknown are displayed in Table 4. When 
ρ  was estimated, there was only a small decrease in the 
estimated probability of selecting the optimal model or a 
correct model. The largest decrease in the estimated 
probability of selecting the optimal model was 0.03 for the 
model with )0,4,0,2(=β′  and 61.0,12 =σv  for ρ  known 
(Table 3) compared to 0.58 for ρ  unknown (Table 4). 

 
Table 3 

Probabilities of Model Selection After Transformation, ρ Known 
 

 

 
 
 

)0,4,0,0,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 3 Optimal 0.61 0.60 0.61 0.61 0.60 
0, 3, 4 II 0.11 0.10 0.11 0.11 0.11 
0, 2, 3 II 0.10 0.11 0.11 0.10 0.11 
0, 1, 3 II 0.09 0.10 0.08 0.09 0.09 
0, 1, 2, 3 II 0.04 0.04 0.04 0.04 0.04 
0, 1, 3, 4 II 0.03 0.03 0.03 0.02 0.02 
0, 2, 3, 4 II 0.02 0.02 0.02 0.02 0.02 
0, 1, 2, 3, 4 II 0.01 0.01 0.01 0.01 0.01 

)8,4,0,0,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 3, 4 Optimal 0.71 0.71 0.73 0.72 0.71 
0, 2, 3, 4 II 0.13 0.12 0.11 0.12 0.13 
0, 1, 3, 4 II 0.11 0.12 0.10 0.11 0.11 
0, 1, 2, 3, 4 II 0.05 0.05 0.05 0.05 0.05 

)8,4,0,9,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 1, 3, 4 Optimal 0.82 0.83 0.83 0.82 0.83 
0, 1, 2, 3, 4 II 0.18 0.17 0.17 0.18 0.17 

)8,4,6,9,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 1, 2, 3, 4 Optimal 1.00 1.00 1.00 1.00 1.00 
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Table 4 
Probabilities of Model Selection After Transformation, ρ Unknown 

 

)0,4,0,0,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 3 Optimal 0.58 0.59 0.60 0.61 0.60 
0, 3, 4 II 0.11 0.10 0.11 0.10 0.10 
0, 2, 3 II 0.11 0.10 0.11 0.11 0.11 
0, 1, 3 II 0.08 0.09 0.10 0.09 0.09 
0, 1, 2, 3 II 0.04 0.04 0.03 0.04 0.04 
0, 1, 3, 4 II 0.03 0.03 0.02 0.02 0.02 
0, 2, 3, 4 II 0.03 0.03 0.02 0.02 0.03 
0, 1, 2, 3, 4 II 0.02 0.02 0.01 0.01 0.01 

)8,4,0,0,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 3, 4 Optimal 0.70 0.70 0.70 0.71 0.70 
0, 2, 3, 4 II 0.13 0.14 0.13 0.13 0.13 
0, 1, 3, 4 II 0.13 0.11 0.12 0.11 0.12 
0, 1, 2, 3, 4 II 0.04 0.05 0.05 0.05 0.05 

)8,4,0,9,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 1, 3, 4 Optimal 0.82 0.82 0.81 0.83 0.83 
0, 1, 2, 3, 4 II 0.18 0.18 0.19 0.17 0.17 

)8,4,6,9,2( ′=β  
Model Category 12 =σv  22 =σv  52 =σv  102 =σv  162 =σv  

0, 1, 2, 3, 4 Optimal 1.00 1.00 1.00 1.00 1.00  
 
Based on our simulation results, when the PC  criterion is 

applied to data following the nested error regression model:  
1. Under both transformations ( ρ  known and ρ  

unknown), the estimated probability of selecting an 
incorrect model was 0.  

2. Under the transformation for ρ  known, the 
probability of selecting the optimal model was 
similar to that of the standard regression model.  

3. When ρ  was estimated, there was only a small 
decrease in the estimated probability of selecting 
the optimal model or a correct model.  

4. Under both transformations ( ρ  known and ρ  
estimated), the PC  criterion performed well, even 
for larger models with large values of 2

vσ .  
5. The performance of the PC  criterion for the nested 

error regression model resembles that of the PC  
criterion for the standard regression model.  

In summary, the PC  criterion does not perform well 
under the nested error regression model when 2

vσ  is large. 
When the transformation for ρ  unknown (or ρ  known) is 
applied, the model then becomes a standard regression 
model and the PC  statistic performs accordingly. 
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