

Artificial Intelligence in Graduate Education Convening

November 5-6, 2025

This project is funded by the Alfred P. Sloan Foundation, G-2024-25540

Session 1: Foundational Concerns of Al Use on Fairness and Access

Debra Stewart, Erin Knepler, and Mehmet Celepkolu

Sloan Foundation and NORC

- This project is funded by the Alfred P. Sloan Foundation (award number G-2024-25540).
- NORC research study team:

Mehmet Celepkolu
Senior Data Scientist II
Subject Matter Expert

Karen Grigorian
Vice President
Senior Research Advisor

Erin Knepler, Ph.D.
Senior Research Director II
Principal Investigator
and Project Director

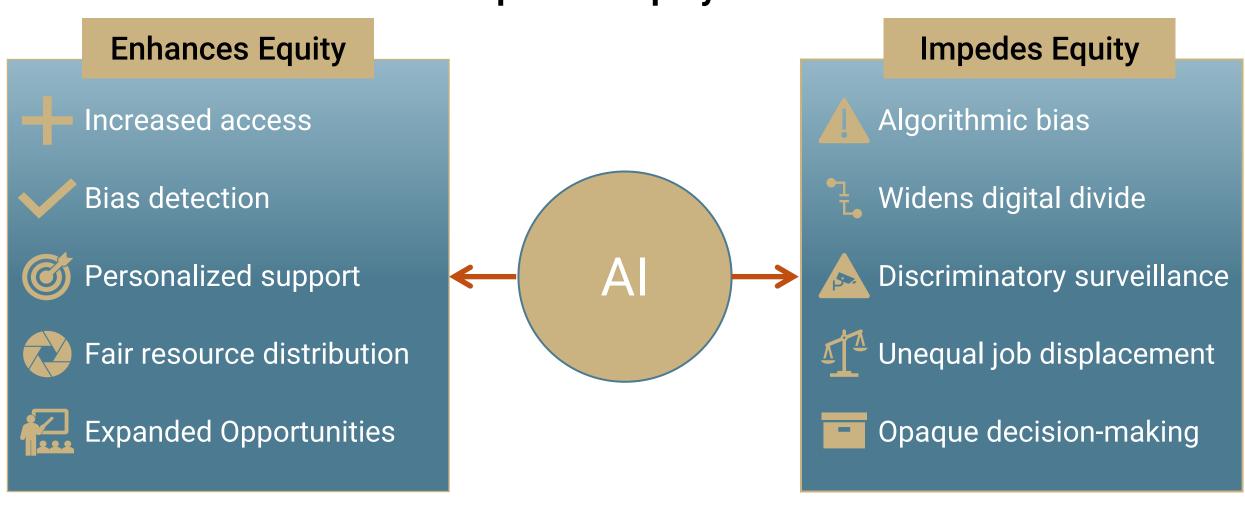
Richard Smith II
Research Scientist
Methodologist

Debra Stewart, Ph.D.
Senior Fellow
Co-Principal Investigator

Alicia Taylor, M.A. Research Director I Project Manager

Convening Overview

Day 1: Foundational Concerns of AI Use on Fairness & Equity


- Dimension 1: Access and the Digital Divide
- Dimension 2: Bias in Al Systems and Decision-Making
- Dimension 3: Representation in AI Development

Day 2: Preview

- Policy Framework, Application Areas, Motivations, Influences:
 - Share findings from the landscape survey
 - Fleshing out point-in-time findings with rich discussion from attendees (both in-person and virtual)
 - Examining implications across all domains of graduate school work

Al's Impact on Equity and Fairness

The same technology can create different outcomes depending on design, deployment, and governance.

Chatham House Rule

Origin

 Royal Institute of International Affairs, based at Chatham House in London, 1927

Key principle

- When a meeting is held under the Chatham House Rule, participants are free use the information received, but neither the identity nor the affiliation of the speaker(s), nor the view of any other participant, may be revealed.
 - Encourages openness and sharing of ideas
 - Protects confidentiality of speakers and participants
 - Widely used in policy, business, and academic discussions

Framing the Equity Challenge

Erin Knepler

The Equity Concern Landscape

Equity in Al Use

Al integration in graduate education raises critical equity concerns impacting access and fairness.

Survey Highlights

Survey findings reveal key concerns among academic stakeholders about AI bias and access.

Key Concerns Identified by Stakeholders

Access to AI Tools

40.3% of stakeholders are very concerned about unequal access to Al tools on campus.

Bias in Training Data

63.6% expressed strong concerns about bias in data used for training large language models.

Proactive Bias Mitigation

Leadership aims to identify and reduce biases in AI training datasets proactively.

Equity and Inclusion Focus

Ongoing dialogue is essential to ensure AI promotes fairness and reduces inequities in education.

Concerns about AI Access and Bias

CONCERN TYPE	PERCENTAGE CONCERNED
Differential Access to Al	40.3%
Unreliable / Biased LLM Training Data	63.6%

Discussion

Equity Quick Poll

Audience views on AI equity concerns like access and bias levels.

Opening Stories

Are AI concerns becoming a reality?

Considerations for Policy and Practice

Equitable AI Access

Institutions must invest in infrastructure and training for equal AI tool access. Address digital divides to support all students.

Mitigating Al Bias

Addressing bias in Al training datasets is critical for fairness.

Role of Policy and Guidelines

Policies should guide ethical AI use and promote inclusion. Develop ethical guidelines, oversight committees, and regular AI system audits. Institutionalize accountability.

Collaborative Problem-Solving

Engaging stakeholders fosters innovative solutions and shared best practices.

Transparent Data Standards

Use unbiased, transparent training data. Establish rigorous data curation and model evaluation processes.

Inclusive Educational Environment

Create a learning environment where all students can thrive regardless of background or technology access.

Dimension 1: Access and the Digital Divide

Erin Knepler

Dimension 1: Access and the Digital Divide

Al Integration Benefits

Al tools enhance learning, research, and productivity in graduate education.

Access Disparities

Significant disparities exist in AI access among graduate students.

Educational Equity Impact

Unequal AI access affects fairness and inclusion in graduate programs.

Inclusive Strategies

Institutions must develop policies for equitable AI integration.

Concerns About Al Access

CONCERN LEVEL	PERCENTAGE
Very / Extremely Concerned	40.3%
Not / Slightly Concerned	23.4%

Economic and Institutional Access

Economic Barriers to Al

Subscription fees limit access to premium AI tools for students from lower-income backgrounds.

Institutional License Disparities

Some graduate programs provide AI tool licenses, while others lack institutional support.

Technological Advantage Gap

Students in well-funded programs gain more technological advantages than those in less resourced schools.

Need for Policy Solutions

Targeted funding and policy changes are essential to ensure equitable AI access for all students.

Technical and Geographic Access

Reliable Technical Infrastructure

Students require stable internet, computing devices, and VPNs to access AI learning tools effectively.

Impact of Inadequate Infrastructure

Poor infrastructure limits students' engagement with Al-enhanced learning opportunities.

Geographic Access Restrictions

Students in certain countries face platform restrictions that block AI tools, limiting global access.

Solutions for Access Barriers

Investments in infrastructure and alternative access methods are essential for restricted regions.

Linguistic, Disability, and Field-Specific Access

Linguistic Access Challenges

Al tools often favor English, limiting usability for non-native speakers and affecting learning quality.

Disability Accessibility Concerns

Al can aid disabilities with voice recognition and text-to-speech but must be inclusively designed.

Field-Specific Al Tool Gaps

Some academic fields have more AI tools, creating uneven access and support among disciplines.

Need for Inclusive Design

Inclusive and cross-disciplinary AI design ensures equitable benefits for all students.

Considerations for Policy and Institutional Strategies

Equity in AI Access

Institutions may consider prioritizing equitable AI integration to support all students effectively.

Infrastructure Investment

Investments in internet, computing resources, and VPN access are essential for remote learning.

Policy Funding Support

Policymakers should fund initiatives to bridge economic and geographic Al access gaps.

Inclusive AI Design

Al tools must consider linguistic diversity and disabilities to ensure full accessibility.

Considerations for Facilitating Equitable Al Access

Institutional Equitable Access

Institutions may consider ensuring all students have fair access to Al tools regardless of background or resources.

Government and Policy Role

Governments and policymakers play a crucial role in bridging the digital divide through supportive regulations.

Inclusive AI Development

Al developers should design tools that accommodate diverse linguistic and ability needs for inclusivity.

Support Systems for Students

Robust support systems must be established to assist students facing barriers to Al access.

Mehmet Celepkolu

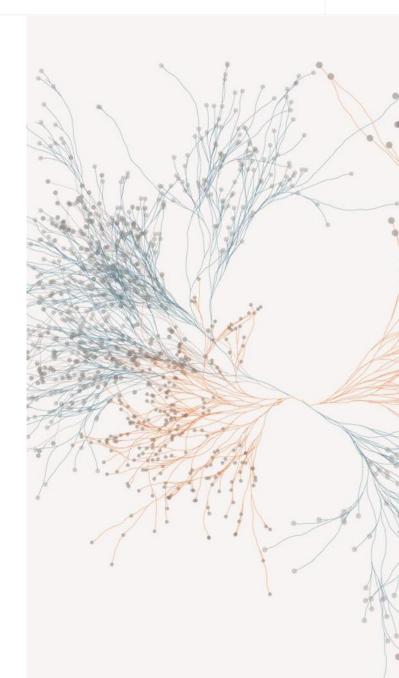
Survey Findings

 63.6% very/extremely concerned about unreliable data in LLM training; dean noted need for "counteracting human bias by identifying and mitigating bias in training datasets."

Understanding the Dual Nature

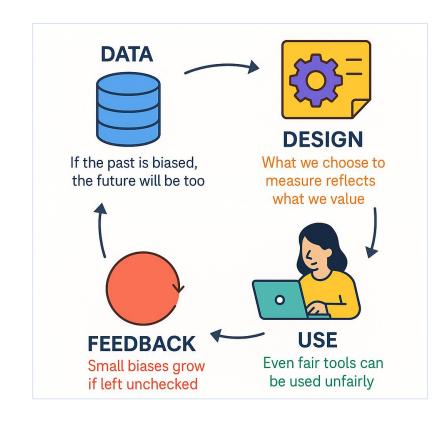
 All is being promoted as both a solution to human bias AND criticized as a source of bias—and we see that in our survey.

Survey Findings


 63.6% very/extremely concerned about unreliable data in LLM training; dean noted need for "counteracting human bias by identifying and mitigating bias in training datasets."

Bias in High-Stakes Decision Making

 Admissions: An AI model copying past biases, disadvantaging lowincome and minority applicants.


Other examples:

- Funding decisions: Fellowship recommendations, TA/RA assignments
- Academic progress: Identifying students "at risk"
- Career advising: Matching students to opportunities
- Misconduct detection: Identifying academic integrity issues

Where Bias may Enter Al Systems:

- **Training data bias:** Historical data reflects past discrimination and embeds it into the model.
- **Algorithmic bias:** The model's design and choice of features can favor certain groups or outcomes.
- Implementation bias: Human use, interpretation, and decision-making around AI outputs introduce additional bias.
- Feedback loop bias: Al's outputs influence future data and decisions, causing its own assumptions or errors to reinforce and amplify over time.

Bias in the Data:

Biases rooted in what information AI learns from and bias enters before the model is built: through data definition and design.

- Historical Bias in Data: Historical data reflecting unequal systems.
 - **Example:** Admissions data underrepresents certain groups due to past exclusion.

Bias in the Data:

Biases rooted in what information AI learns from and bias enters before the model is built: through data definition and design.

- Historical Bias in Data: Historical data reflecting unequal systems.
 - **Example:** Admissions data underrepresents certain groups due to past exclusion.
- **Sampling Bias :** The data collected over-represents some groups or scenarios and under-represents others.
 - Example: Models trained only on applicants who submitted GRE scores exclude those who opted out, often lowerincome or international candidates.

Bias in the Design (Model and Algorithmic):

Biases enters during model construction: through coding of assumptions into the math.

- Inductive bias: assumptions the model makes to generalize (e.g., linearity).
 Not inherently bad but can distort fairness.
 - All models are wrong, but some are useful!
 - Example: Decision trees (deterministic if-else rules with hard thresholds)

Bias in the Design (Model and Algorithmic):

Biases enters during model construction: through coding of assumptions into the math.

- Inductive bias: assumptions the model makes to generalize (e.g., linearity).
 Not inherently bad but can distort fairness.
 - All models are wrong, but some are useful!
 - Example: Decision trees (deterministic if-else rules with hard thresholds)
- Feature selection bias: selecting certain features can encode socioeconomic, demographic, or institutional advantages into the model, leading to unequal outcomes (e.g., ZIP code → race/wealth).
 - Example: A progress toward degree model includes GPA but ignores commuting distance or work status.

Bias in the Use: Human/Operational Biases

Even fair tools can be used unfairly. Bias enters after deployment through human decision-making.

- Selective Use of Al: Bias arises because Al is applied to some groups/situations but not others.
 - Admissions: Al essay scoring used only for international applicants

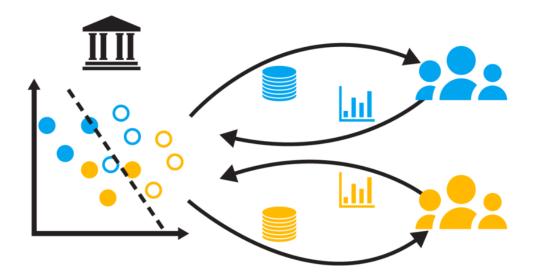
Bias in the Use: Human/Operational Biases

Even fair tools can be used unfairly. Bias enters after deployment through human decision-making.

- Selective Use of AI: Bias arises because AI is applied to some groups/situations but not others.
 - Admissions: All essay scoring used only for international applicants
- Over-trust in Al Outputs: Accepting Al scores or recommendations without critical evaluation.
 - Advising: Faculty rely on AI "fit scores" without reviewing student work

Bias in the Use: Human/Operational Biases

Even fair tools can be used unfairly. Bias enters after deployment through human decision-making.


- Selective Use of Al: Bias arises because Al is applied to some groups/situations but not others.
 - Admissions: All essay scoring used only for international applicants
- Over-trust in Al Outputs: Accepting Al scores or recommendations without critical evaluation.
 - Advising: Faculty rely on AI "fit scores" without reviewing student work
- Misinterpretation: Al output is assumed to be objective truth rather than a probabilistic signal
 - Academic Integrity: The AI tool incorrectly flags writing from non-native English speakers because of atypical grammar patterns, phrasing, or vocabulary.

Systemic / Dynamic Biases: Bias Over Time (Feedback Loops)

Bias evolves and systems reinforce inequity through repeated cycles.

- Feedback Loop Bias Source: Al systems learning from their own influenced outcomes.
 - Example: Students flagged "at-risk" get more attention, reinforcing the model's assumptions next year.

Takeaways

- Bias Can Enter at Any Stage: From data collection to feedback loops, every step can amplify inequities.
- Data Reflects History: If the past is biased, the future will be too.
- Design Choices Reflect Values: What we choose to measure reflects what we value.
- Even Fair Tools Need Fair Use: Even well-built AI can be misapplied.
- Bias Grows Without Feedback: Small biases become big if left unchecked.

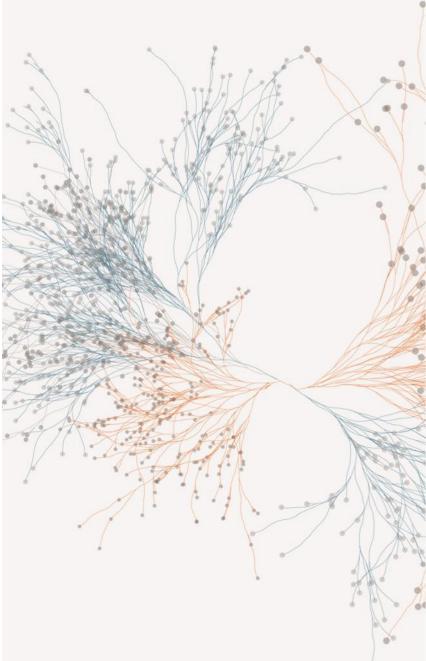
Bias isn't just a tech problem: it is a people and process problem!

Breakout Discussion Questions:

- Q1. How do you apply AI in any high-stakes area (e.g., admissions, academic advising)?
- Q2. How might our admissions, funding, or assessment data reflect historical or systemic biases and what steps could make them more representative?
- Q3. When AI tools are used in advising, admissions, or evaluation, who remains accountable for fairness and outcomes?
 - How do we ensure faculty and staff understand both the capabilities and limitations of these tools?

Breakout Session

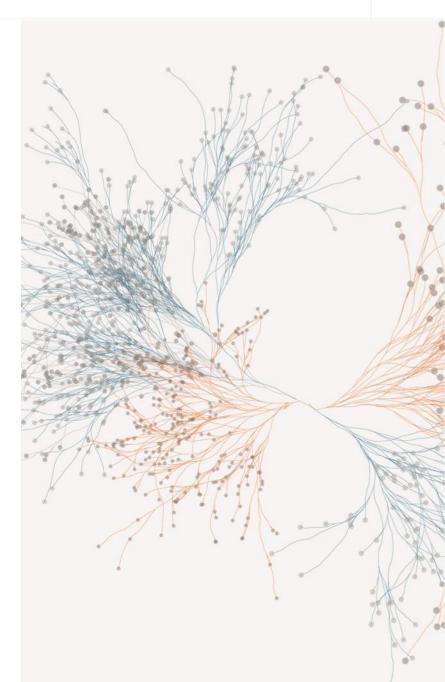
Dimension 3: Representation in Al Policy & Guideline Development

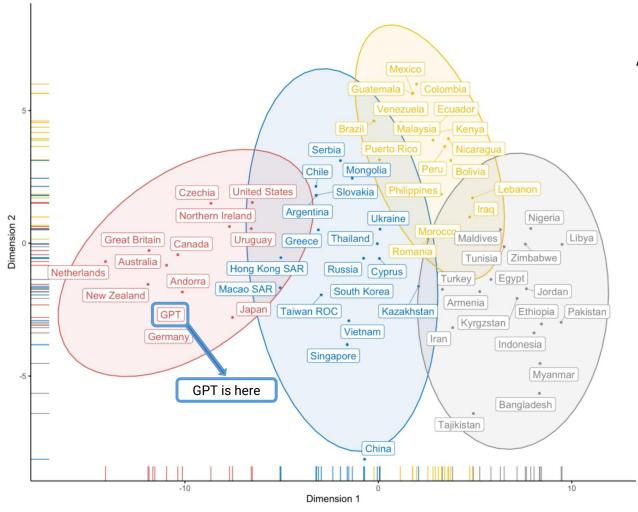

Mehmet Celepkolu

Dimension 3: Representation in AI Policy and Guideline Development

Survey Findings

 Students are among the most engaged stakeholders; concerns about faculty expertise; fragmented efforts led by a variety of groups and committees




Al's Cultural Lens:

AI is built somewhere-- and that "somewhere" matters:

- Most AI tools trained on English, Western academic sources
- Built around Anglophone writing and research norms
- "Global" AI often means "Western defaults"

Are you part of the culture GPT was trained on?

- Harvard study examined GPT's underlying value system by comparing GPT responses to World Values Survey data from 65 cultures.
- Values align most with U.S., U.K., Canada, Western Europe; least with Ethiopia, Pakistan, Kyrgyzstan.
- GPT's value profile is strongly WEIRD:
 Western, Educated, Industrialized, Rich, and Democratic.

Equity or Homogenization?

Are we empowering or flattening voices?

- Al writing tools reinforce dominant academic conventions
- Citation databases underrepresent non-Western scholarship
- Al can democratize access for multilingual scholars
- But risks imposing cultural and disciplinary uniformity

Open Questions:

- How might faculty mentors balance helping students meet institutional expectations for "academic English" while preserving originality of thought and voice?
- What does it mean for graduate scholarship to have a "diverse voice" in an era when writing is increasingly machine-assisted?
- Who gets to decide what "good" or "appropriate" writing looks like when AI systems become part of the review and feedback process?

Building an Equity-Centered Al Framework

Debra Stewart and Erin Knepler

Building an Equity-Centered Framework

Potential equity principles for guiding the use of AI in graduate education:

- Universal access to AI tools for all graduate students
- Mandatory bias audits before implementing AI in highstakes decisions
- Transparency about when and how AI is used
- Right to human review of Al-assisted decisions
- Representation of affected populations in Al governance
- Regular disaggregated outcome monitoring
- Proactive accommodation for students with differential access

Principles: Aspirational Statements to inform strategy and decision-making from the viewpoint of the senior officer for graduate education.

Let's take a poll.

Thinking About Equity

Equity as a Priority

Default to equity concerns when in doubt

Stakeholder Engagement

Involve students and faculty in thinking about equity implications

Make it ongoing, not onetime

Next Steps for Reception and Day 2

Debra Stewart and Erin Knepler

Thank you.

Debra W. Stewart, Co-PI Senior Fellow Stewart-Debra@norc.org

Erin Knepler, PI
Senior Research Director
Knepler-Erin@norc.org

Research You Can Trust

Artificial Intelligence in Graduate Education Convening

November 5-6, 2025

This project is funded by the Alfred P. Sloan Foundation, G-2024-25540

Housekeeping for Virtual Attendees

We're welcoming 95+ virtual attendees today!

- The sessions today will be recorded.
- Closed Captioning is available.
- While we are recording today's session, only the slides will be made available after the convening.
- Please submit questions using Zoom's Q&A feature. If any questions are submitted in the Chat, we will not see them immediately. Please use the Q&A feature.
- The Chat feature is enabled, so you are able to add comments or chat with other virtual attendees.
- Questions, please contact our research team at <u>Al-GradEd@norc.org</u>.

Sloan Foundation and NORC

- This project is funded by the Alfred P. Sloan Foundation (award number G-2024-25540).
- NORC research study team:

Mehmet Celepkolu
Senior Data Scientist II
Subject Matter Expert

Karen Grigorian
Vice President
Senior Research Advisor

Erin Knepler, Ph.D.
Senior Research Director II
Principal Investigator
and Project Director

Richard Smith II
Research Scientist
Methodologist

Debra Stewart, Ph.D.
Senior Fellow
Co-Principal Investigator

Alicia Taylor, M.A. Research Director I Project Manager

Thursday, November 6 Day 2 Agenda

01	Project Background and Convening Overview
02	Session 2: Policy Framework
03	Session 3: Process Implementation (working lunch)
04	Session 4: Drivers and Influencers
05	Session 5: Strategic Directions
06	Synthesis and Next Steps

The 10,000 Foot View of Al

The Optimist

"Al is going to be the greatest force for economic empowerment..."

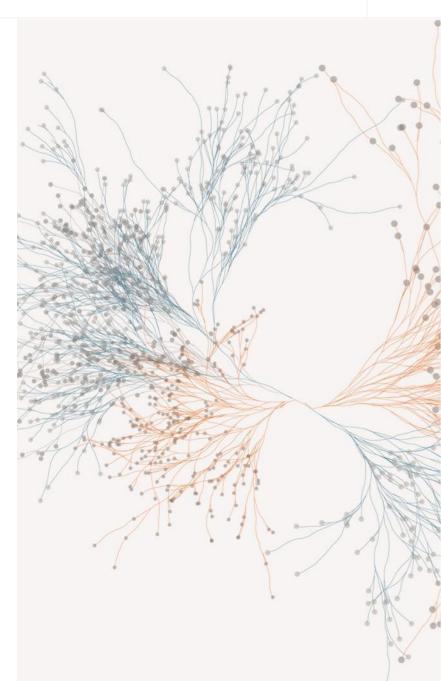
Sam Altman, CEO OpenAl

The Alarmist

"The most likely result of building a superhumanly smart Al...is that literally everyone on Earth will die."

Eliezer Yudkowsky, Al researcher & MIRI Co-founder

The Realist


"I console myself with the normal excuse: If I hadn't done it, somebody else would have."

Geoffrey Hinton, "Godfather of Al"

Project Overview

- * Identify and analyze AI-related policies and processes currently in place or under consideration at the institutional level within U.S. graduate schools
- * Explore the possible central features of community-grounded guidelines for Al integration from the viewpoint of senior officers for graduate education

Conceptual Model

MOTIVATIONS

- ✓ Efficiency
- Enhanced decision making
- ✓ Program improvement
- ✓ Better & more consistent data
- ✓ Reduce response time
- Personalize student & applicant experiences
- ✓ Tracking information
- ✓ Avoid obsolescence

CONCERNS

- ✓ Reliability of information, results, or findings
- ✓ Security for individuals
- Intellectual property loss
- ✓ Impact on learning
- Impact on critical thinking skills
- √ Fairness implications
- ✓ Lack of transparency

AI-RELATED POLICIES

High-level statements or guiding principles related to the application of AI technologies or tools

GRADUATE SCHOOL ACTIVITY DOMAINS

- Administrative
- Research
- Curricular
- · Student Conduct

AI-RELATED PROCESSES

A series of tasks designed to achieve outcomes using AI whether they are planned or emerge organically

ACTORS & INFLUENCERS

- ✓ President / Chancellor
- ✓ Dean & VP colleagues
- ✓ Provost
- ✓ Faculty Senate
- ✓ Legal Office
- ✓ Union
- ✓ System Office
- ✓ Legislature or Trustees
- ✓ National associations
- ✓ IT companies

299

Original Sample 186 R1s, 75 R2s, 103 MSIs

53.2%

Response Rate
159 complete surveys

N = 70

Al Policies/Guidelines Implemented

N = 46

Al Policies/Guidelines in Development

Session 2: Policy Framework

Richard Smith & Mehmet Celepkolu

Session 2: Presenter and Moderator

Richard Smith II, Presenter
Research Scientist
NORC at the University of Chicago

Mehmet Celepkolu, Moderator
Senior Data Scientist
NORC at the University of Chicago

Status of Al Policy Development

Institutional Policy Implementation

Approximately 44% of graduate schools have implemented AI policies or guidelines.

Policy Development in Progress

About 29% of institutions are actively drafting Al policies, reflecting increased awareness of Al governance needs.

Lack of Policy Initiatives

Around 27% of graduate schools have not started AI policy development.

Future Plans for AI Policy Development

Intentions to Develop Policies

Most graduate schools plan to create Al-related policies in the future to address emerging challenges.

Focus Areas of Guidelines

Guidelines emphasize research integrity, citation of AI content, and ethical AI use in coursework.

Uncertain Implementation Timeline

Many institutions have unclear timelines for finalizing and implementing Al policies due to complexity.

Recognition of Policy Importance

Schools recognize the need for clear policies to responsibly guide Al use in graduate education.

Schools Not Planning to Develop Policies

Decentralized Decision-Making

Some graduate schools delegate AI policy decisions to individual faculty or departments, favoring academic autonomy.

Benefits of Flexibility

This approach allows tailored AI policies suited for different disciplinary contexts and academic needs.

Risks of Inconsistency

Lack of centralized policies can lead to inconsistent standards and potential challenges in managing AI ethics uniformly.

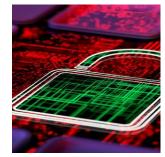
Influencing Factors

Institutional culture and confidence in existing frameworks may influence the decision to avoid formal AI policies.

Existing and Emerging Areas of AI Policies and Guidelines

Al Use in Research

Policies focus on appropriate AI use by graduate students to ensure rigorous research standards.



Academic Integrity and Discipline

Emphasis on disciplinary actions aims to deter AI misuse and uphold ethical academic behavior.

Data Security Concerns

Al policies address data security risks linked to handling sensitive information with Al tools.

Policy Communication Channels

Embedding Policies in Syllabi

Including AI policies in course syllabi ensures students understand expectations from the start of each course.

Internal Website Guidelines

Internal websites act as centralized hubs for faculty and staff to access AI policy documents easily.

Public Graduate School Pages

Graduate school webpages provide a public platform to showcase institutional commitment to responsible AI use.

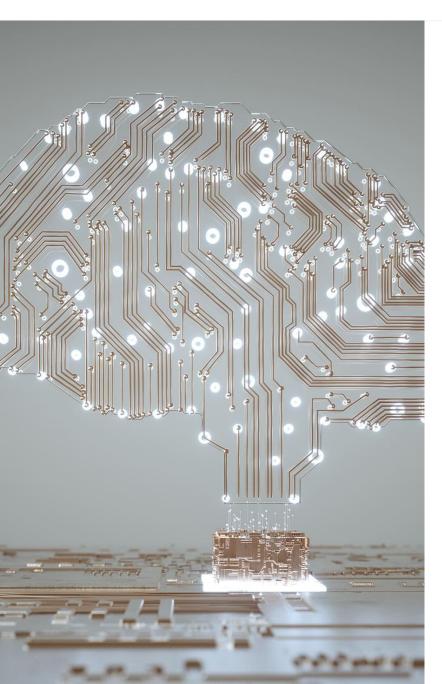
Session 2 Panelists

Wojtek Chodzko-Zajko
Vice Provost for Graduate
Education and Dean of the
Graduate College
University of Illinois UrbanaChampaign

Clay Gloster
Dean of the Graduate College
North Carolina Agricultural and
Technical State University

Break

Session 3: Process Implementation – Part 1


Erin Knepler

Session 3: Presenter and Moderator

Erin Knepler, Presenter and Moderator
Senior Research Director
NORC at the University of Chicago

Al in Graduate School processes

Al Adoption in Graduate Schools

46% of graduate schools use AI to improve administrative tasks and student services.

Wide Operational Integration

Al spans office operations, student communication, recruitment, admissions, and enrollment.

Benefits of AI Implementation

Al enhances data analysis, streamlines communication, and boosts process efficiency.

Extent and Areas of Al Use

Al Adoption in Graduate Schools

Nearly half of graduate schools use AI for administrative tasks enhancing efficiency.

Primary AI Applications

Office operations, communication, and recruitment are leading areas for Al use.

Proceeding with Caution - Al Use Areas

Admissions and enrollment management show cautious AI adoption due to complexity.

AI in Office Operations: Applications and Benefits

AI Automates Routine Tasks

Al automates scheduling, data entry, and document management, freeing staff for strategic work.

Enhanced Student Engagement

Al enables personalized messaging, reminders, and feedback to improve student communication and satisfaction.

Efficient Program Reporting

Al analyzes large datasets quickly, generating insights that support informed decision-making.

Benefits of AI Integration

Al improves data analysis, communication, and process efficiency for agile office operations.

AL in Student Communications and Support

AI Tools Used

Chatbots, automated emails, and interactive FAQs enhance student support services effectively.

Benefits for Students

Al improves response times, personalization, and accessibility to student services.

Operational Efficiency

Al reduces staff workload and supports scalable, consistent communication with students.

Session 3: Panelists for Process Implementation - Office Operations and Communicating to Graduate Students/Student Support Services

Wojtek Chodzko-Zajko
Vice Provost for Graduate
Education and Dean of the
Graduate College
University of Illinois UrbanaChampaign

Elizabeth Meyer-Davis
Dean of the Graduate School
University of North Carolina at
Chapel Hill

Scott Adler
Dean of the Graduate School
University of Colorado Boulder

Suzanne Barbour
Dean of the Graduate School
Duke University

Session 3: Process Implementation – Part 2

Erin Knepler

Applications of AI in Recruitment

Personalized Outreach

Al enables tailored messages based on interests and academic background to increase engagement.

Enhanced International Recruitment

Al analyzes global trends and preferences to identify high potential recruitment regions.

Predictive Candidate Targeting

Machine learning predicts ideal candidates likely to enroll and succeed based on historical data.

Anticipated Benefits in Recruitment

Enhanced Operational Efficiency

Al automates repetitive tasks, freeing recruitment teams for strategic work.

Improved Applicant Engagement

Personalized communication and timely follow-ups strengthen candidate connections.

Increased Conversion Rates

Al prioritizes candidates likely to apply, boosting recruitment success.

Applications of AI in Admissions

Personalized Applicant Experiences

Al platforms customize communication based on applicant behavior and preferences to improve engagement.

Streamlined Application Screening

Machine learning analyzes essays, transcripts, and letters efficiently for consistent applicant evaluation.

Predictive Student Outcomes

Predictive analytics assess academic success likelihood and retention to guide admissions decisions.

Equity and Bias Mitigation

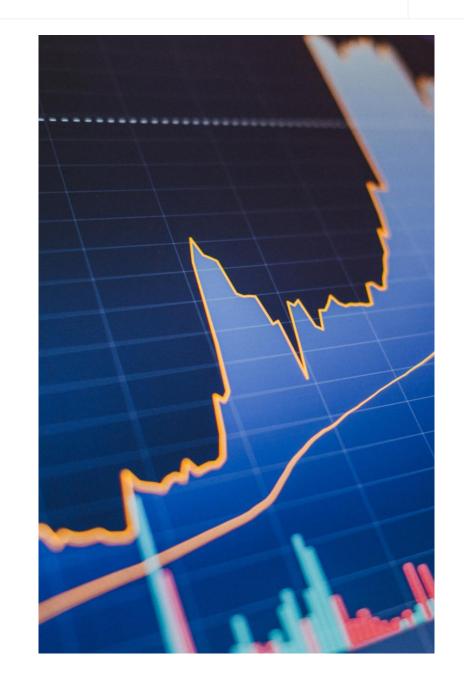
Al identifies and corrects biases to promote fairer, more inclusive admission practices.

Anticipated Benefits in Admissions

Improved Efficiency

Al automates large application processing, reducing time and resource use significantly.

Data-Driven Decisions


All enhances accuracy by analyzing comprehensive applicant data for better fit insights.

Stronger Enrollment Outcomes

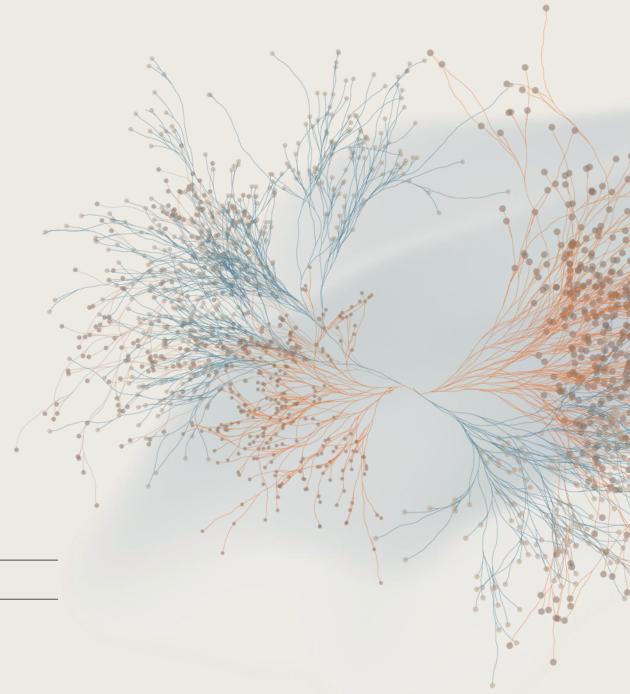
Predictive modeling and targeted engagement help admit students likely to succeed.

Strategic and Equitable Process

Al supports a more strategic and fair enrollment process improving operational capabilities.

Session 3: Panelists for Process Implementation - Recruitment and Admissions/ Incorporating AI into Enrollment Management

Bonnie Ferri
Vice Provost for Graduate and
Postdoctoral Education
The Georgia Institute of
Technology


Peter Harries
Dean of the Graduate School
North Carolina State University

Mark Garrison
Dean of the School of
Graduate Studies
Morgan State University

Artificial Intelligence in Graduate Education Convening

November 5-6, 2025

Session 4: Drivers and Influencers

Richard Smith II & Mehmet Celepkolu

Session 4: Presenter and Moderator

Richard Smith II, Presenter
Research Scientist
NORC at the University of Chicago

Mehmet Celepkolu, Moderator Senior Data Scientist NORC at the University of Chicago

Operational and Strategic Motivations

Operational Efficiency

Al improves administrative processes to increase operational efficiency in graduate schools.

Enhanced Student Communication

Al enables more responsive and personalized communications with students.

Improved Student Tracking

Al helps track student progress and engagement effectively for better support.

Strategic Decision-Making

Al analyzes data to guide policy, enrollment forecasting, and resource optimization.

Industry, Government, and Accreditation Pressures

Industry Labor Market Demands

Graduate schools adopt AI to meet job market demands for technological proficiency and data skills.

Government Regulations

Government mandates push institutions to use AI for accountability, transparency, and compliance.

Accreditation Standards

Al helps schools align with accreditation requirements, enhancing credibility and institutional performance.

Roles of Students, CIOs, Faculty, and Leadership

Active Stakeholder Groups

Students, CIOs, and faculty actively shape AI implementation in education. Their insights guide practical AI applications and implications.

Leadership's Strategic Role

Deans and VPs provide leadership and decision-making authority essential for AI policy development and resource allocation.

Inclusive AI Integration

Diverse stakeholder involvement ensures AI aligns with institutional goals and meets various community needs thoughtfully.

Risks and Challenges

Data Reliability Concerns

Unreliable AI data and outputs can negatively affect decisions and student results.

Data Security Risks

Protecting sensitive information from breaches is a major institutional priority.

Impact on Student Learning

Al may reduce human interaction and cause over-reliance on automated systems.

Equity and Access Issues

Unequal access to AI tools raises concerns about fairness and inclusion.

Ethical Use and Decision-Making Pace

Faculty Expertise Gap

Faculty often lack sufficient AI knowledge, requiring targeted professional training for effective integration.

Ethical AI Use

Fairness and transparency remain central ethical challenges in applying AI within academic settings.

Slow Decision-Making

Institutional decision processes are slow, delaying adoption of innovative AI technologies.

Fragmented Implementation

Al efforts are often uncoordinated and driven by individuals outside formal roles, lacking strategic support.

Navigating AI Adoption in Graduate Education

Benefits of AI Adoption

Al enhances efficiency, decision-making, and improves student outcomes in graduate education.

Risks and Challenges

Institutions must address data reliability, security, ethical concerns, and equity issues in Al use.

Need for Ongoing Research

Ongoing research, dialogue, and policy development are essential for responsible AI implementation.

Balanced Strategic Approach

Graduate schools should balance AI benefits and risks for a positive future impact.

Session 4: Panelists for Drivers and Influencers

Bill Graves
Professor of Horticulture and
Former Dean of the
Graduate College
lowa State University

Bonnie Ferri
Vice Provost for Graduate and
Postdoctoral Education
The Georgia Institute of
Technology

David Daleke
Vice Provost for Graduate
Education and Health Sciences
and Dean of the Graduate School
Indiana University Bloomington

Break

Session 5: Strategic Directions for Al in Graduate Education

Debra Stewart and Erin Knepler

What principles should serve as our North Star as we integrate AI into the administration and practice of graduate education?

Towards Developing Guidelines for Integrating AI into Graduate Education

- An aspirational goal
- Proposed content areas for consideration and discussion

A roadmap for navigating AI will be included in the final paper to be shared in early 2026.

Closing Housekeeping for All Attendees

Thank you all for attending!

- We will share the PowerPoint slides from the convening with all registrants.
- For any questions, please contact our research team at Al-GradEd@norc.org.

Thank you.

Erin Knepler

Senior Research Director II knepler-erin@norc.org

Debra Stewart

Senior Fellow stewart-debra@norc.org

