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Counterfactual scenarios reveal 
historical impact of cropland 
management on soil organic 
carbon stocks in the United States
Stephen M. Ogle 1,2*, F. Jay Breidt 3,4, Stephen Del Grosso 5, Ram Gurung 2, Ernie Marx 2, 
Shannon Spencer 2, Stephen Williams 2 & Dale Manning 6

Natural climate solutions provide opportunities to reduce greenhouse gas emissions and the United 
States is among a growing number of countries promoting storage of carbon in agricultural soils as 
part of the climate solution. Historical patterns of soil organic carbon (SOC) stock changes provide 
context about mitigation potential. Therefore, our objective was to quantify the influence of climate-
smart soil practices on SOC stock changes in the top 30 cm of mineral soils for croplands in the United 
States using the DayCent Ecosystem Model. We estimated that SOC stocks increased annually in US 
croplands from 1995 to 2015, with the largest increase in 1996 of 16.6 Mt C (95% confidence interval 
ranging from 6.1 to 28.2 Mt  CO2 eq.) and the lowest increase in 2015 of 10.6 Mt C (95% confidence 
interval ranging from − 1.8 to 22.2 Mt C). Most climate-smart soil practices contributed to increases in 
SOC stocks except for winter cover crops, which had a negligible impact due to a relatively small area 
with cover crop adoption. Our study suggests that there is potential for enhancing C sinks in cropland 
soils of the United States although some of the potential has been realized due to past adoption of 
climate-smart soil practices.

Reducing the influence of anthropogenic activity on the climate system is at the forefront of global discus-
sions since the Paris Agreement was adopted at the COP21 of UN Framework Convention on Climate Change. 
Although fossil fuel combustion has been identified as the key driver of anthropogenic greenhouse gas (GHG) 
emissions and will need to be reduced to limit warming below the 2 °C  goal1, natural solutions are likely also 
needed to achieve this  goal2, 3. Enhancing soil C sinks in agricultural croplands is a natural solution proposed to 
contribute to this  goal4, and sequestering C in soils is part of a larger plan for reducing GHG emissions by the 
national government in the United  States5.

Soils contain a large pool of organic carbon and have been a significant source of  CO2 emissions to the 
atmosphere since the advent of agrarian  societies6. Climate-smart practices for soil management can enhance 
resiliency of agricultural systems and their sustainability, as well as mitigate GHG emissions and sequester C in 
soils. Practices that can enhance soil organic carbon (SOC) stocks include planting winter cover crops; reducing 
tillage intensity; rotating annual crops with perennials, such as years with hay or pasture; enhancing C input to 
soils through higher crop productivity with more productive varieties, irrigation and related practices; as well 
as adding amendments such as manure, compost, and  biochar7. A recent global analysis suggests a technical 
potential for enhancing C sinks by 11.3  GtCO2 eq.  year−1, and a cost-effective reduction of 5.3  GtCO2 eq.  year−1 
at a C price of $100 per t  CO2 equivalent until  20508. In this study, Roe et al.8 estimated an increase in SOC stocks 
for agricultural lands in the United States that would reduce atmospheric  CO2 levels by 64  MtCO2 eq.  year−1, 
excluding biochar amendments. This analysis focused on enhancement of C sinks with widespread adoption of 
winter cover crops and no-till management. In contrast, Fargione et al.3 estimated levels of SOC stock changes 
that would reduce atmospheric  CO2 levels by 103  MtCO2 eq.  year−1 based on winter cover crop adoption on 
88 Mha of cropland in the United States.
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Projections of GHG emissions mitigation scenarios are needed to quantify the potential to enhance soil C 
sinks, but the historical patterns of C sequestration in soils also provide context for assessing future potentials, 
i.e., a basis for evaluating the likelihood of achieving some level of mitigation given past patterns. Evidence of 
historical changes consistent with future projections suggest that the potential exists for agriculture to contribute 
meaningfully to mitigation goals. Past increases in SOC stocks from adoption of climate-smart soil practices, 
however, also imply that part of the potential to sequester C in soils has been realized. Moreover, historical 
context is needed given the uncertainty in achieving targets that have been suggested by programs such as the 
4 per mille  initiative4, 9.

Our objective was to implement a counterfactual analysis evaluating the historical influence of climate-smart 
soil practices on C sequestration in mineral soils that are used for crop production in the United States. To our 
knowledge, a counterfactual analysis has not been conducted for croplands in the United States to evaluate 
the historical impact of climate-smart soil practices on SOC stocks. Specifically, we conducted a model-based 
assessment using the DayCent Ecosystem Model, in which practices were removed from the historical time series 
in order to quantify their impact on the levels and trends in SOC stock changes. We focused on climate-smart 
soil practices that have been adopted in the past by farmers in the United States, including winter cover crop 
management, conservation tillage, hay and pasture in a rotation with annual crops, manure amendments, and 
setting-aside land from crop production.

Results
SOC stocks associated with climate-smart soil practices. Management of croplands on mineral 
soils in the United States has increased SOC stocks at varying levels over the time series, with the largest change 
of 16.6 ± 5.7 Mt C in 1996 and the lowest level of 10.6 ± 6.1 Mt C in 2015 (Fig. 1). The influence of practices 
varied over the time series with larger changes in SOC stocks from conservation tillage in the latter part of the 
time series, while manure amendments, hay and pasture in rotation with annual crops, and setting-aside land 
from production had a larger impact on SOC stocks in the early part of the time series. In contrast to these other 
practices, winter cover crops had a minimal effect on SOC stocks over the entire time series.

Conservation tillage was the only practice that increased the level of SOC stock change in the latter part of 
the time series. The underlying driver of this pattern was higher levels of adoption of conservation tillage start-
ing in the early 2000s (Fig. 2) that led to the largest change in SOC stocks associated with the practice in 2013, 
estimated at 9.20 ± 4.9 Mt C according to the counterfactual analysis (Fig. 1). The rate of C sequestration on a per 
unit area basis across the time series varied between 0.23 ± 0.2 to 0.32 ± 0.2 t C  ha−1  year−1 (Fig. 3).

In contrast to conservation tillage, the change in SOC stocks has remained relatively stable over time for 
manure amendments, and declined for hay and pasture in rotation with annual crops. The underlying drivers 
of these contrasting patterns were associated with trends in the areas of land managed with these practices and 
associated rates of C sequestration on a per unit area basis. Specifically, the area with manure amendments was 
relatively stable across the time series, averaging 4.5 Mha (Fig. 2), and the rate of C sequestration across the time 
series was also relatively stable, averaging 0.28 ± 0.6 t C  ha−1  year−1 (Fig. 3). In turn, this led to an average change 
in SOC stocks of 1.3 ± 2.6 Mt C from 1995 to 2015 (Fig. 1). In contrast, the area with hay and pasture in rotation 
with annual crops declined from 4.7 Mha in 1995 to 2.3 Mha in 2015, and the rate of C sequestration decreased 
from 0.97 ± 0.6 t C  ha−1  year−1 to 0.41 ± 01.4 t C  ha−1  year−1. The decreasing rate of C sequestration occurred as the 
SOC pool approached a new equilibrium based on the level of C inputs and outputs in the model  simulations10. 
Overall, the amount of SOC stock change associated with hay and pasture in rotation with annual crops was 
reduced from 4.6 ± 2.8 Mt C in 1995 to 0.94 ± 3.2 Mt C in 2015 (Fig. 1).

The US Department of Agriculture established a program to remove highly erodible land from production 
during the 1980s, known as the Conservation Reserve Program. Similar to hay and pasture in rotation with 
annual crops, the influence of setting-aside land from production also declined through time with the largest 
increase in SOC stocks of 2.4 ± 1.8 Mt C in 1996 to the lowest value of 1.1 ± 1.6 Mt C in 2015 (Fig. 1). The main 
driver of this pattern was the large decline in area enrolled in the Conservation Reserve Program over the time 
series (Fig. 2), while the rate of sequestration declined by a relatively small amount from 0.21 ± 0.2 t C  ha−1  year−1 
to 0.17 ± 0.2 t C  ha−1  year−1 (Fig. 3).

Winter cover crops had a negligible influence on C sequestration due to a relatively small area managed with 
cover crops in the United States from 1995 to 2015 (Figs. 3 and 4). We did find that termination method for the 
cover crop, prior to planting the next crop, had a relatively large influence on the rate of C sequestration. There 
is currently insufficient data to determine termination practices, so we simulated two options, i.e., terminating 
the cover crop with tillage or with an herbicide application. Within the limited land base managed with winter 
cover crops, the rate of sequestration varied from a loss of SOC with tillage termination to gains with an herbi-
cide termination (Fig. 3). Also, there is an underlying pattern of increasing stock change rates over 5-year time 
blocks because we simulated new adoption every 5 years. Future simulations could smooth this pattern with 
new adoption on an annual basis rather than 5-year time blocks.

Spatial heterogeneity across the United States. There is spatial heterogeneity in the effect of manage-
ment practices on SOC stock changes across the United States (Fig. 4). Averaging across the 21 years, incorporat-
ing hay and pasture in rotation with annual crops led to large variability in all regions ranging from change rates 
that were less than − 0.5 t C  ha−1  year−1 to greater than 0.5 t C  ha−1  year−1. In contrast, conservation tillage had 
relatively stable rates of SOC stock changes across the entire country, mostly in the range of no change to gains of 
0.5 t C  ha−1  year−1. As noted previously, the effect of cover crops is largely dependent on the termination method. 
With tillage termination, cover crop management led to losses of SOC in most of the north-central region of 
the United States, while the effect ranged from losses to increases in SOC for other regions. If cover crops were 
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terminated with herbicides, then most of the croplands across the United States gained C, ranging from 0 to 
0.5  t  C   ha−1   year−1. Similarly, manure amendments and setting-aside land from production typically ranged 
between no gain and 0.5 t C  ha−1  year−1 averaged across the 21 years (Fig. 4). The exception was manure amend-
ments in the south-central region where there is a relatively large area of losses, which appears to be associated 
with declining rates of manure amendments across the time series. There are also small areas in the western 
United States where manure amendments increased SOC stocks by larger rates exceeding 1 t C  ha−1  year−1, and 

Figure 1.  SOC stock changes (0–30 cm layer) and standard deviations (± 1 s.d.) from 1995 to 2015 and the 
contribution of management practices based on the counterfactual scenarios (Mt C). A positive value represents 
an increase in SOC stocks and a negative represents a decrease in SOC stocks.
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is related to relatively high amendment rates compared to other regions. Additional survey data on application 
practices are needed to confirm the rates of manure amendments in this region.

Uncertainty. Since 1995, SOC stocks in mineral soils increased within the top 30 cm of the soil profile for 
cropland in the United States, with a high value in 1996 of 16.6 Mt C. The uncertainty in this estimate is relatively 
large with a 95% confidence interval ranging from 6.1 to 28.2 Mt C (Fig. 1) (Note: The uncertainty in Fig. 1 rep-
resents 1 s.d., but a 95% confidence interval is approximately 2 s.d.). The lowest estimate of SOC stock change is 
from 2015 with an increase of 10.6 Mt C, and again a relatively large 95% confidence interval ranging from − 1.8 
to 22.2 Mt C. Furthermore, at a 95% confidence level, the uncertainties range over ± 100% for all practices across 
the time series, except for the impact of conservation tillage in 3 years (Fig. 1). While some of the uncertainty is 
associated with input data on management practices, most of the uncertainty is due to imperfect representation 
of processes in the DayCent model structure and associated parameterization, including soil organic matter 
dynamics, crop production, thermal regimes, and water flows through the crop-soil system (see Supplementary 
Information for more details about uncertainty in the DayCent model predictions).

Discussion
The highest amount of SOC sequestration at 16.6 Mt C in 1996, which is 60.8 ± 21.1 Mt  CO2 eq., is consistent with 
projections from Roe et al.8, who estimated a potential to reduce atmospheric  CO2 levels by 64  MtCO2 eq.  year−1 
in the United States (Note: unit conversion into  CO2 eq. to compare with estimates from Roe et al. study). 
However, the Roe et al.8 only focused on adoption of no-till management and winter cover crops. According to 
our analysis, there are approximately 30 Mha of cropland managed with conservation tillage so while there is 
potential for further adoption, this highlights that some of the potential has already been realized. In contrast, 
winter cover crops have not been adopted widely in the United States, so a limited amount of the potential has 
been realized. Limited adoption of practices such as winter cover crops may also imply that there is a higher cost 
associated with their adoption, and this could be a barrier to further  adoption11.

Overall, the counterfactual analysis to the historical baseline of cropland management in the United States 
provides evidence that C can be sequestered in agricultural soils through climate-smart soil practices, such 
as conservation tillage, manure amendments, setting-aside land from cultivation, and incorporating hay and 
pasture in annual crop rotations. Cover crops may also sequester C in soils, but adoption rates will need to be 
considerably larger than historical levels to have much of an impact. Moreover, the effect will depend on the 
practice that is used to terminate the winter cover crop before planting the crop for the next growing season. 
There is less C sequestration if the cover crop is terminated with tillage rather than herbicides. Tillage is known 
to alter soil structure and the physical environment, impact microbial organisms, and enhance decomposition 
of soil organic  matter12–15. This result is consistent with an empirical meta-analysis conducted by McClelland 
et al.16 who found less sequestration with tillage termination of cover crops.

Among these practices, adoption of conservation tillage is the most  controversial17, 18. We found a mod-
est level of sequestration at the national scale with average annual rates varying between 0.23 ± 0.2 to 
0.32 ± 0.2 t C  ha−1  year−1 across the time series to a 30 cm depth (Fig. 3). However, there are impacts on SOC 

Figure 2.  Trends in areas associated with winter cover crops, manure amendments, hay and pasture in rotation 
with annual crops, conservation tillage, and set-aside of cropland in reserve from 1995 to 2015 (Million ha).
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stocks at deeper depths, particularly with no-till  management19–21, leading to additional uncertainty in the effect 
of this practice. For example, Ogle et al.22 analyzed experimental data and found that no-till management could 
influence SOC stocks from 5 to 70 cm in temperate dry and wet climates depending on the soil characteristics, 
and Cai et al.21 found a significant impact to 60 cm overall without separating effects by climate and soil types. 
Future research and model development are needed to address effects deeper in the soil profile.

There have also been questions about the continuity of conservation tillage with potential for rotational tillage 
systems that incorporate a more intensive practice periodically. Recently, Lu et al.23 found a reduction in adoption 
of no-till management for corn-soybean rotations in the United States after 2008 due to herbicide resistance of 
weeds, and in turn, a loss of SOC after 2009 from cropland soils due to increasing tillage intensity. This contrasts 
with our findings, which showed a continuing trend of reducing tillage intensity in the latter part of the time 

Figure 3.  Trends and uncertainty (± 1 s.d.) in rates of SOC stock change (0–30 cm layer) associated with winter 
cover crops, manure amendments, hay and pasture in rotation with annual crops, conservation tillage, and set-
aside of cropland in reserve from 1995 to 2015 (t C  ha−1  year−1).
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series. We evaluated other crop systems besides corn and soybean rotations, and also included reduced tillage 
management in our study. It is noteworthy that Lu et al.23 used additional data sources from surveys conducted by 
a private firm called Kynetec that were not included in our analysis, and this may explain the difference between 
the two studies. We used data collected by the U.S. Department of Agriculture (USDA)24, 25 and the Conservation 
Technology Information  Center26. Further analysis of the area of conservation tillage adoption is warranted in 
the future due to these inconsistencies. Regardless, given that some of the mitigation potential has been realized 
and probable challenges with continuous adoption of this practice, it is likely that conservation tillage may have 
a less significant role in reducing GHG emissions for the United States in the future.

Manure amendments can increase SOC stocks, and this practice had a relatively stable impact on SOC stocks 
over the time series. The potential could increase with additional livestock production, and more manure avail-
able for application to soils, but livestock production currently contributes significant amounts of GHG emissions, 
particularly  CH4 emissions from enteric fermentation in  ruminants27. Therefore, it seems unlikely that more 
livestock production to enhance soil C sinks would be strategic for meeting the goals of the Paris Agreement 
without the emergence of new tools and technologies that reduce GHG emissions from enteric fermentation 
and manure management. Independent of increasing livestock production, there is evidence that a more even 
distribution of crop and livestock systems across the country would increase the land base of manure amend-
ments and may increase SOC stocks while reducing synthetic fertilizer inputs required to maintain yield  levels28.

Hay and pasture in rotation with annual crops has increased SOC stocks historically, but the trend has been 
declining during the last decade. This trend is associated with less area in which hay and pasture are rotated 
with annual crops, in addition to declining rate of C sequestration on lands with this practice. Consequently, it 

Figure 4.  Average SOC stock changes (t C  ha−1  year−1) from 1995 to 2015 on an interpolated 5 km grid for each 
of the management practices, including conservation tillage (A), manure amendments (B), winter cover crops 
with herbicide termination (C), winter cover crops with tillage termination (D), hay and pasture in rotation with 
annual crops (E), and setting-aside cropland from production (F). Maps produced in ArcGIS Release 10.7.1, 
https:// www. esri. com.

https://www.esri.com
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may be that the role of incorporating hay and pasture into annual crop rotations will become less important to 
meet policy program goals, assuming there is limited new adoption of this practice over the historical baseline.

Setting-aside land from production can also increase SOC stocks (Fig. 1). Much of the land set-aside through 
the Conservation Reserve Program is marginal for crop production due to high erosion rates, and therefore less 
sustainable. These lands could be maintained in reserve or converted to grazing land, which would likely maintain 
the stocks over time. However, the area of reserve cropland has declined across the time series, leading to less 
removal of  CO2 from the atmosphere. In addition, this analysis does not incorporate any leakage that may have 
occurred with setting aside land from agricultural production in the United States. For example,  Wu29 estimated 
that for every 1 hectare of cropland in the United States that is placed in reserve, 0.2 hectare of non-cropland is 
converted to cropland. Land use conversion is likely to reduce SOC  stocks6, 30, and counteract some of the benefit 
from setting-aside cropland into reserve.

Winter cover crop management is a candidate for further expansion in the United States, with current man-
agement on a relatively modest area of about 2 Mha (Fig. 2). Fargione et al.3 estimated reductions in atmospheric 
 CO2 levels by 103 Mt  CO2 eq.  year−1 if this practice is adopted on 88 Mha. This would be approximately 75% of 
the United States cropland area included in our analysis. It is important to note that some regions in the United 
States have large amounts of winter grains, which would preclude adoption of winter cover crops, and may 
limit adoption to levels lower than proposed in the study by Fargione et al.3. It is noteworthy that the maximum 
simulated rates of C sequestration on a per unit area basis are about 0.22 t C  ha−1  year−1 in our study, which is 
on the lower end of values estimated from meta-analyses of experimental data that range from about 0.1 to over 
1 t C  ha−1  year−116, 31. Therefore, rates of C sequestration may be higher than we have simulated.

While meta-analyses are valuable for synthesizing results across studies, there are caveats with using them to 
infer dynamics across a country. In particular, meta-analyses are based on a convenience sample of data avail-
able in the  literature32. These types of datasets may not provide an accurate statistical inference of the effect that 
cover crops, or other practices, have on SOC stock changes across the spatial domain of an entire country. A 
convenience sample may inadvertently under-represent or over-represent some cropping systems, soil types, 
other variables influencing soil organic matter dynamics, or even regions within the domain of a country, lead-
ing to biases in a resulting statistical inference. While weighting methods can help to reduce such biases, best 
practice would be based on a probability sampling  design33 in which all cropland fields would have known, 
positive probabilities of selection in the sample. A national sample could be stratified to ensure representation 
across the range of factors affecting SOC stocks (soil and weather properties, management practices, etc.). Data 
from such a probability sample would be representative of all croplands and would support unbiased statistical 
inferences on SOC stock changes.

Regardless, given current rates of adoption, it is likely that expanding cover crop management could increase 
SOC stocks. There is evidence that adoption has increased over the past  decade34, and is likely to continue increas-
ing especially if there are effective programs to incentivize adoption. Assessing the effectiveness of such programs 
to enhance SOC is an active area of research. The USDA Environmental Quality Incentives Program (EQIP) 
and Conservation Stewardship Program (CSP) currently offer subsidies to encourage cover crop adoption. Park 
et al.35 found that the EQIP program increased the use of cover crops, but the CSP did not have the same impact 
according to their analysis. Programs designed to reduce GHG emissions must also account for the temporal 
variability in SOC changes, the potential lack of permanence that may occur with reversion of practice  choices36, 
and the net effect of management changes on GHG emissions beyond the change in SOC stocks, such as the 
potential to increase soil  N2O  emissions31, 37, 38. In a recent example, Moore et al.39 accounted for impacts on soil 
 N2O emissions as well as soil and biomass C storage, and estimated that adoption of conservation management 
practices in the United States has led to an average reduction of 134.2 Mt  CO2 eq.  year−1 based on data from 2017.

Uncertainty in quantifying the effect of climate-smart soil practices on an annual basis is also relatively 
large, even at the national scale, which will need to be factored into policy programs. At the scale of individual 
fields, uncertainties are further magnified ranging well over 100  percent40. The uncertainties are large because 
experimental site data, which are used to assess uncertainty (Supplementary Fig. S1), have a large range of vari-
ability, from gains to losses of SOC with adoption of climate-smart soil practices in some  studies41. The DayCent 
ecosystem model does not always capture the range of these management effects. Further research and model 
development are needed to reduce these uncertainties, and there are promising avenues with new discoveries 
and paradigm shifts in our understanding of soil organic matter  dynamics42. Moreover, there are limited observa-
tions for parameterizing models, highlighting the need to expand soil C monitoring networks through research 
alliances and other efforts to support assessments of SOC stock  changes43.

The United States government is pledging to reduce GHG emissions by 50% over this decade in support of 
the Paris Agreement, and this includes C sequestration in agricultural soils as part of their larger  plan5. Based 
on our counterfactual analysis, it is plausible that agricultural soils could sequester C and reduce atmospheric 
 CO2 levels by the estimated 64  MtCO2 eq.  year−1 from the Roe et al.  study8. Climate-smart soil practices have 
been adopted historically in the United States and reduced atmospheric  CO2 levels through sequestration of C 
in soils, but amounts have declined over time for several practices, including hay and pasture in rotation with 
annual crops, and setting-aside land from crop production. Further innovation may be possible in the agricultural 
sector to foster additional increases in SOC stocks, reduce other GHG emissions associated with management of 
agricultural lands, and make a more significant contribution to the Paris  Agreement44. To the extent that history 
is an indicator of the future, agricultural management in the United States may be part of the climate solution, 
removing  CO2 from the atmosphere by storing C in soils, but the historical level of C sequestration would only 
represent a small part of the total greenhouse gas emission reductions needed to achieve the goal of the Paris 
Agreement and limit warming below 2 °C.
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Methods
This assessment focuses on croplands with mineral soils (i.e., excludes Histosols) in the United States from 1995 to 
2015 that were used to produce alfalfa hay, barley, corn, cotton, grass hay, grass-clover hay, oats, peanuts, potatoes, 
rice, sorghum, soybeans, sugar beets, sunflowers, tobacco, and wheat. These crops are grown on approximately 
70% of total national cropland area. We excluded woody perennial crops and other less common annual crops 
on an area-basis, such as vegetables.

The assessment was conducted using a model-based platform with the DayCent Ecosystem Model (Fig. 5). 
We used the DayCent model because we have recently calibrated the model using experimental  data45 and can 
quantify uncertainty to derive confidence intervals in the  results40. DayCent is a process-based model simulating 
carbon and nitrogen dynamics in plant-soil systems on a daily time step to a 30 cm depth in the soil  profile45–49. 
Input data included daily weather, edaphic characteristics, crop types and management information. The model 
has been calibrated with Bayesian methods using observations from long-term experiments. More information 
is given below about each of the platform components.

Model calibration. The soil organic matter module of DayCent was calibrated using Bayesian  methods45. 
First, a global sensitivity analysis was conducted with the Sobol method to select the most important model 
parameters influencing SOC dynamics in the  model50. This method incorporates evaluation of interactions 
among the parameters to rank their influence on the predictions of SOC stocks. The global sensitivity analysis 
considered 17 model parameters and identified 9 parameters with total sensitivity indices > 2.5% for the final 
Bayesian calibration. The most sensitive parameters were drivers of SOC decomposition in the model simula-
tions, including the decomposition rate constants, temperature effects, and tillage impacts on decomposition. 
Second, the most sensitive parameters were calibrated using the sampling importance resampling  method51. This 
method approximates the joint posterior distribution of the parameters using a particle filter method based on 
the match between model output for each parameter set and observational  data52. Model output that matches 
more closely to the measurements are given higher weights and are more likely to be selected in the resampling 
step. This method is non-iterative and explores the n-dimensional space of the parameters through a Monte 
Carlo analysis. More information about the sensitivity analysis and calibration are in Gurung et al.45. For applica-
tion of DayCent in the model-based assessment of SOC stock changes, we used maximum a posteriori estimates 
of model parameters, which are the most likely parameter values from the joint posterior distribution. See Sup-
plementary Information for evaluation of the SOC estimates from the DayCent model using independent sites 
from model calibration.

Model input data. There are 4 general categories of model input data, including management practices, 
daily weather, edaphic characteristics and the enhanced vegetation index. The core dataset providing manage-
ment information for this study was the USDA National Resources Inventory (NRI)53, 54. The NRI is a two-stage 
survey of land in the United States with primary sampling units that are stratified based on township and range 
from the United States Public Land Survey. The total cropland area in the assessment averaged 125.4 Mha from 
1995 to 2015, with a high value of 128 Mha in 1995 and low of 124 Mha in 2012, and included an average of 
171,397 survey locations from the NRI. Each survey location had a weight that is used to estimate the total 

Figure 5.  DayCent ecosystem modeling platform.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14564  | https://doi.org/10.1038/s41598-023-41307-x

www.nature.com/scientificreports/

amount and trend in SOC stock change for the land base. The NRI collects data using remote sensing technolo-
gies and site visits, and cropping histories were provided from 1979 to 2015.

Along with the cropping histories from the NRI, additional management data were needed to drive the model 
simulations, including synthetic fertilization, manure amendments, tillage practices, irrigation management, and 
winter cover crop management. Various data sources were combined to develop the time series of management 
practices (Table 1). Irrigation data were compiled through the NRI survey, but the remaining practices were 
imputed for the NRI locations using statistical methods. We created 6 imputation sets of management data in 
this process representing uncertainty in the assignment of practices to individual NRI survey locations.

Synthetic N fertilization and manure amendments were imputed for the NRI survey locations from the 
NRCS Conservation Effects and Assessment Project (CEAP)  survey24. Synthetic fertilization practices were 
also informed by USDA-Economic Research Service  datasets55, 56. For the imputation, trends in N management 
were determined based on the time series of fertilization rates from 1990 to 2015, with ERS Cropping Practices 
Survey data from 1990 to 1999, CEAP survey data from 2000 to 2005, and ARMS survey data for the remainder 
of the time series. The trends were determined at the scale of NRCS CEAP  Regions24. With the regional trending 
information, an artificial neural  network60 was used to identify likely N inputs at NRI survey locations within 
each CEAP region, and final N inputs for synthetic fertilization and manure amendments were assigned using a 
predictive mean matching  method61, 62. The predictive mean matching method identified the most similar man-
agement activity recorded in the CEAP survey that matches the prediction from the artificial neural network. 
The matching ensures that imputed management activities were realistic for each NRI survey location, and not 
odd or physically unrealizable results that could be generated by the artificial neural network.

Historical trends in tillage management were based on data from the Conservation Technology Information 
Center (CTIC) for 1980 through 2004, CEAP survey for 2000 through 2005, and USDA Agricultural Resource 
Management (ARMS) surveys for 2002 through  201525. The trends were determined at the scale of the CEAP 
 regions54 in the 5-year time blocks from 1980 to 2015. In order to ensure time series consistency, a linear regres-
sion model was fit to model the CEAP tillage data as a function of the CTIC tillage data from 2001 to 2004, when 
there was overlap between the time series in these datasets. This regression model determined the relationship 
between CEAP and CTIC tillage estimates, and was used to adjust the CTIC tillage data in the 1980s and 1990s 
based on the relationship between the two datasets in the early 2000s. In addition, we used linear interpolation 
to gap-fill the missing 5-year time block from 2006 to 2010.

Tillage management practices, including continuous no-till (NT), reduced-till (RT) and full-till (FT), were 
imputed for each NRI survey location in 5-year blocks from 1980 to 2015. A tillage practice was assigned to 
each NRI locations in the imputation analysis using a hot-deck method (i.e., random selection from survey 
responses in the CEAP survey) for 2001–2005 with CEAP data aggregated by CEAP region, crop group, and soil 
texture class. Then, tillage management was imputed forward and backward from 2001 to 2005 using trending 
information in tillage management at the CEAP region scale (discussed above). This process used a novel, in 
homogeneous Markov–Chain approach to ensure a high degree of correlation in the type of tillage across time 
at each NRI survey location. For the first imputation step backward in time, the transition probability matrix for 
the Markov Chain was determined so that tillage type changed as little as possible (that is, NT-NT, RT-RT and 
FT-FT transitions were as likely as possible) subject to the constraint that the marginal proportions of NT, RT, 
FT at the start of the step (later time) matched the 2001–2005 time block, and the marginal proportions at the 
end (earlier time) matched the adjusted CTIC tillage data (linear regression model adjustment to ensure time 
series consistency between CTIC and CEAP data; see previous paragraph). Subsequent transition probability 
matrices further back in time then continued to enforce trending by matching the marginal proportions from 
the adjusted CTIC data. Similarly, transition probability matrices forward in time started with the CEAP data 
and then matched to the available ARMS data while ensuring as much stability as possible in the tillage types 
over time at each NRI survey location. The resulting imputed tillage types were sequences at each survey location 
that changed tillage type only rarely and at random, reflecting overall trends in tillage management practices.

Winter cover crop management data were compiled in the CEAP survey for 2000 through 2005 and USDA 
Census of Agriculture for 2012 and  201758, 59. We used a hot deck method to impute winter cover crops for the 
NRI survey locations. First, we randomly assigned cover crops to NRI locations from 2001 to 2005 using survey 
responses in the CEAP data. Second, we assumed that winter cover crop management was negligible before 1990 

Table 1.  Data sources for management practices in United States agricultural croplands.

Management practice Data source

Synthetic fertilization
1. USDA-NRCS Conservation Effects Assessment Project Survey (USDA-NRCS24

2. USDA Agricultural Resource Management  Surveys55

3. Cropping Practices  Survey56

Manure amendments 1. USDA-NRCS Conservation Effects Assessment Project Survey (USDA-NRCS24

2. US-EPA Manure Management  Database57

Tillage practices
1. USDA-NRCS Conservation Effects Assessment Project Survey (USDA-NRCS24

2. USDA Agricultural Resource Management  Surveys25

3. Conservation Technology Information Center  Data26

Irrigation management 1. USDA-NRI  Survey54

Winter cover crops 1. USDA-NRCS Conservation Effects Assessment Project Survey (USDA-NRCS24

2. USDA Census of  Agriculture58, 59
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and increased at a linear rate between 1990 to the 2000 levels from the CEAP survey. To represent this linear 
pattern, we randomly removed cover crops from NRI survey from 1996 to 2000 and then 1991 to 1995 reach-
ing the target level of no cover crop management in 1990. For the time blocks after 2005 (i.e., 2006–2010 and 
2011–2015), we randomly assigned or in some cases removed winter cover crops from NRI survey locations to 
match the trending information from USDA Census of  Agriculture58, 59.

Additional model input data include daily weather, edaphic characteristics, and enhanced vegetation index 
data (EVI). Daily weather data are from a 4 km gridded weather data product produced by the PRISM Climate 
 Group63. Edaphic characteristics, including soil texture, depth and pH, are assigned to each NRI survey location 
from the Soil Survey Geographic Database (SSURGO)64. The EVI data inform the estimation of net primary 
production in the DayCent model using the NASA-CASA production  algorithm65, 66. The EVI time series is 
compiled from MODIS vegetation products (MOD13Q1 and MYD13Q1) with gap filling of the approximately 
8-day intervals using the Savitzky–Golay  Filter67. EVI data are available from 2000 to 2015 in our time series, 
and are used to inform production for corn, soybeans, sorghum, cotton, wheat, and other close-grown crops 
such as barley and oats. NPP is estimated using the standard crop production algorithm in DayCent for other 
crops and simulations prior to  200046.

Historical simulations and counterfactuals. Model simulations include an equilibrium and base his-
tory simulation to initialize the model’s state variables (e.g., initial levels of SOC in 1995), and then simulation 
of a historical assessment period from 1995 to 2015. The equilibrium simulation establishes steady-state condi-
tions (e.g., equilibrium) under natural vegetation, historical climate data, and the soil characteristics for the NRI 
survey locations. We simulated the equilibrium conditions for 6000 years to achieve an approximate steady state 
in the DayCent model. For the first part of the base history, crop management was simulated with low input 
agriculture, i.e., no synthetic fertilization and pre-modern varieties, and the start of the base history simulations 
varied based on historical expansion of agriculture in the United States to 1950. In the second part of the base 
history from 1950 to 1979, we simulated increasing use of synthetic fertilizers and increasing productivity of 
crops that had occurred through breeding programs. The last part of the base history from 1980 to 1994 and the 
historical assessment from 1995 to 2015 were simulated with the data collected in the NRI survey and imputed 
information for management practices as discussed above.

The counterfactual scenarios were based on eliminating practices one at a time and quantifying the difference 
in SOC stock changes from the historical assessment simulation. The following counterfactual scenarios were 
simulated in this assessment:

• Winter cover crop management by eliminating cover crops in the model simulations;
• Conservation tillage by converting all reduced and no-till management systems to a full tillage system;
• Hay and pasture in a rotation with annual crops by replacing hay and pasture in the sequence with other 

annual crops in the time series for the NRI survey location (we replaced the hay and pasture by randomly 
selecting other annual crops grown at the survey location); and

• Manure amendments by changing the N input to synthetic mineral fertilization, and therefore not changing 
the amount of N available for crop production in the simulation.

The changes associated with the counterfactual scenarios were made in the early part of the NRI time series 
from 1979 to 1994, through the historical assessment period in 2015. We extended the management changes to 
1979 in order to limit artificial trends in the C stocks during the assessment period that could have occurred if 
we abruptly shifted the management activity in 1995 for the historical time series in the counterfactual analysis.

The set-aside scenario was based on simulation of annual crops that are converted into grass cover when the 
land was set-aside from crop production according to the NRI survey data. No counterfactual case was simulated 
for set-aside management because the effect can be quantified directly from the historical simulation given that 
this is the only practice at the location (i.e., other practices, such as cover crop management, represent the com-
bined effect of several practices in many cases, and so the impact of individual practices cannot be quantified 
directly from the historical simulation).

Spatial maps are provided for the average effect of climate-smart soil practices on SOC stocks from 1995 to 
2015 on a 5 km grid (Fig. 4). The maps were created using an interpolation process with an inverse distance 
weighting spatial method that determines each grid cell value using a linear-weighted combination of sample 
points within a threshold distance of 20 km. NRI survey locations closer to the cell centroid were given more 
weight in calculating the SOC stock change than points further from the centroid. We required a minimum of 
5 NRI survey locations within the 20 km threshold to calculate a grid cell value; otherwise, the grid cell was set 
to a null value.

Error propagation and uncertainty. Uncertainty was quantified using a Monte Carlo approach adapted 
from Ogle et al.40 (Fig. 6). The sources of uncertainty include management input data, error in model structure 
and parameters, and scaling uncertainty associated with deriving total SOC stock change from the estimated 
changes at NRI survey locations. Uncertainty in the management data was determined by imputing 6 represen-
tations of the management histories for the NRI survey locations. Uncertainty in model structure and param-
eterization was approximated using an empirical approach with linear mixed effect model in which the ‘true’ 
SOC stocks, as measured in long term experiments, are modeled as a function of the predicted C stocks from 
DayCent and other  covariates68. Random effects were included in these models to capture the dependence of 
data collected from the same experimental site and region. The resulting linear mixed effect model was applied 
to DayCent model output, adjusting for model bias and quantifying a level of precision in the model predictions 
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(See Supplementary Information for more information). Scaling uncertainty was associated with estimating 
total SOC stock changes for the land base represented by the NRI sample in our analysis (averaging 171,397 
survey locations across the time series). This uncertainty was quantified using replicate weights generated from 
the two-stage sampling design of the NRI survey and provided with the NRI  dataset54. The replicate weights 
were used to approximate unbiased estimates of the variance that was associated with sampling error in the NRI 
(changes in the results if, hypothetically, repeated NRI samples were drawn from the population) and to approxi-
mate confidence intervals in the results.

The Monte Carlo analysis was conducted with 1000 iterations propagating uncertainty through the analysis 
from 3 major sources (Fig. 6). For each iteration, there was a random selection of DayCent model output based 
on one of the 6 imputations, a random selection of parameter values for the empirical estimator of structural 
and parameter uncertainty in the DayCent model; and a random selection of a set of replicate weights to scale 
SOC stock changes from the individual NRI survey locations to the entire domain of the assessment. Estimates 
were based on the mean and standard deviation from the simulated SOC stock changes across the Monte Carlo 
iterations.

Data availability
The observational data used to evaluate the DayCent Ecosystem Model are available in supplementary mate-
rial. The spatial data from the counterfactual analysis are provided at the Dryad digital archive site (https:// doi. 
org/ 10. 5061/ dryad. q2bvq 83qx). The input data associated with the USDA-NRCS National Resources Inventory 
(NRI) and USDA-NRCS Conservation Effects Assessment Project are confidential and cannot be provided under 
United States Code, Title 18, Section  1905, United States Code, Title 7, Section 2276, and United States Code, 
Title 7, Section.  2204.
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