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Abstract
Respondent-driven sampling (RDS) is an increasingly common method for surveying rare,
hidden, or otherwise hard-to-reach populations. Instead of formal probability sampling from
a well-defined frame, RDS relies on respondents themselves to recruit additional participants
through their own social networks. By necessity, RDS is often initiated with a small, non-
random sample. Standard RDS estimators have been developed under strong assumptions
on the diffusion of sampling through the network over multiple waves of recruitment. We
consider an alternative setting in which these assumptions are not met, and instead a large
probability sample is used to initiate RDS and only a few waves of recruitment take place.
In this setting, we develop dual-frame estimators that use both known inclusion probabilities
from the initial sampling design and estimated inclusion probabilities from RDS, treated
as a nonprobability sample. In a simulation study using network data from the Project 90
study, our dual-frame estimators perform well relative to standard RDS alternatives, across
a wide range of recruitment behaviors. We propose a simple variance estimator that yields
stable estimates and reasonable confidence interval coverage. Finally, we apply our dual-
frame estimators to a real RDS study of smoking behavior among lesbian, gay, bisexual, and
transgender (LGBT) adults.

Keywords Inverse propensity estimator · Network sampling · Nonprobability sample ·
Project 90

1 Introduction

1.1 Background on RDS

Sampling from rare, hidden, or otherwise hard-to-reach populations is challenging because
screening costs can be very high and securing trust of potential respondents may be difficult.
Respondent-driven sampling (RDS) is an increasingly common method for surveying such
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populations [13]. Instead of formal probability sampling from a well-defined frame, RDS
relies on respondents themselves to recruit additional participants through their own social
networks, alleviating both the screening and trust issues. In practice, respondents are given
a limited number of “coupons” that they can use to recruit acquaintances.

By necessity, RDS is often initiated with a small, non-random sample. Inference for data
from RDS then relies on modeling assumptions about the structure of the network and the
process by which respondents recruit within their networks. There is extensive literature on
inference for RDS; see [14] for an overview. We consider three standard RDS estimators in
this paper. Each relies on the network degree, dk , which is the number of acquaintances in
the network of individual k. The Salganik–Heckathorn estimator (SH, also known as RDS-I)
is specifically designed to estimate binary proportions under RDS [26]. For a population
consisting of two groups A and B, the SH estimate for the population proportion in group A
is

μ̂SH
A = ̂dB̂CBA

̂dÂCAB + ̂dB̂CBA
,

where ̂dA, ̂dB are the estimated average degrees in group A and group B, and ̂CAB , ̂CAB are
the estimated probabilities of cross-group recruitment. [25] provides a variance estimation
approach using bootstrap that accounts for the dependence within the sample.

The more general estimator in Volz and Heckathorn [28] (VH, also known as RDS-II)
has the form of a Hansen–Hurwitz estimator [12], with probabilities proportional to dk . The
estimate for the mean is

μ̂VH
y =

∑

k∈s d
−1
k yk

∑

k∈s d
−1
k

,

where dk is the degree of element k. Volz and Heckathorn derived a variance estimator from
Hansen-Hurwitz theory that attempts to account for the dependencies in the RDS sample.
VH makes strong assumptions that the network is fully connected and symmetric and that
the recruitment process evolves as a random walk on the network, with seeds chosen with
probability proportional to degree, recruiters given one coupon, recruiters choosing a single
acquaintance at random, and sampling conducted with replacement.

Under stronger assumptions about the structure of the network, Gile [7] was able to
weaken assumptions about the recruitment process, including the single coupon and the with-
replacement assumptions, resulting in the successive sampling (SS) estimator. The estimator
is derived iteratively, alternating between estimation of the population degree distribution
using the current estimates of inclusion probabilities and estimation of the inclusion proba-
bilities using the current estimated degree distribution.At convergence, the resulting estimator
for the population mean is

μ̂SS
y =

∑

k∈s yk/π̂(dk)
∑

k∈s 1/π̂(dk)
,

where π̂(dk) is the estimated inclusion probability with degree dk . For variance estimation,
Gile [7] introduced a bootstrap procedure.

In practice, only a few waves of recruitment may take place in RDS [20, 22], due to
network limitations, recruiting failures, or time constraints for the study. Even if many seeds
are used in order to generate some longer recruitment chains, the resulting sample is unlikely
to meet the assumptions needed for proper inference with standard RDS estimators.

In some cases, it is feasible to select a large number of seeds as a probability sample
representative of the population of interest. In this case, RDS is used to augment sample size
and it is less critical to generate long chains that traverse the population network. Michaels
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et al. [21] described an attempt to apply RDS to augment the number of respondents in a
study of smoking behavior among lesbian, gay, bisexual, and transgender (LGBT) adults. To
our knowledge, this is the first publication using a probability sample from a representative
national panel as the starting seeds. In this paper, we develop novel methods for combining
a probability sample of seeds and a nonprobability respondent-driven sample of recruits. We
study the methods via simulation with sample sizes similar to [21] and apply the methods to
data from the LGBT smoking behavior study [21].

1.2 Background on probability and nonprobability methods

We consider the setting in which RDS seeds are selected as a probability sample with known
inclusion probabilities, and treat those being recruited via RDS as a nonprobability sample
since we do not know the probability of the recruitment process. There is a growing litera-
ture on the combination of probability and nonprobability samples as survey costs increase
and response rates decrease. In our context, the study variables of interest and the auxiliary
variables are observed in both samples. Much of the literature in combining probability and
nonprobability samples assumes study variables of interest are observed in the nonproba-
bility sample only, while auxiliary variables are observed in both samples. But modifying
such a method to include study variables also observed in the probability sample is usually
straightforward, so we include such methods in our brief review.

An approach that uses bivariate Fay-Herriot models from small area estimation to combine
domain-level point estimates from probability and nonprobability samples is described in [6].
[18] constructs a post-stratified estimator with two post-strata: the nonprobability sample and
its complement, from which the probability sample is selected (probability sample elements
that overlap with the nonprobability sample are excluded). The Bayesian approach for com-
bining probability and nonprobability samples [24, 29] uses the nonprobability sample to
provide a prior for estimates from the probability sample. Sample matching and mass impu-
tation approaches [2, 17, 23, 30] implicitly or explicitly construct a model by regressing study
variables on covariates in the nonprobability sample, then use the fitted model and observed
covariates to predict the study variables on the probability sample. Since the probability sam-
ple is representative of the population, the predictions can be appropriatelyweighted (it is thus
sometimes useful to think of the weights from the probability sample as being imputed to the
nonprobability sample). The inverse weighting approach or quasi-randomization approach
[2, 4, 19] estimates the propensities for the nonprobability sample by combining the probabil-
ity and nonprobability samples based on the missing at random assumption. Doubly-robust
estimators combine an estimated propensity and a regression model for the study variable
[2, 19, 27] and are consistent if either model is correctly specified.

[16] (Chapter 3) proposed a class of dual-frame estimators for combining probability
samples with nonprobability samples selected via expert judgment in the context of an appli-
cation to a fisheries survey. In simulation studies across a range of population and judgment
characteristics, the dual-frame approach yields stable estimates and reasonable confidence
interval coverage, and the strategy that combines probability and judgment sampling domi-
nates the classic strategy of pure probability sampling with known design weights. Because
of the good performance of the dual-frame estimation technique in the judgment sampling
application, particularly its empirical robustness, we adapt the method for inference in RDS
with probability samples of seeds.
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1.3 Overview of paper

We introduce notation and pseudolikelihood estimation of inclusion probabilities for the
nonprobability sample in Sect. 2.1. The dual-frame estimator is introduced in Sect. 2.2 and
variance estimation is discussed in Sect. 2.3. Our approach treats recruits as a Poisson sample
from the complement of the probability sample of seeds, and does not require assumptions
about the network. In Sect. 3, we describe simulation results using network data from the
Project 90 study, comparing our dual-frame estimators to standard RDS alternatives (SH,
VH, SS) across a wide range of recruitment behaviors. In Sect. 4, we apply our dual-frame
estimators to the study in [21] of smoking behavior among LGBT adults. A brief discussion
follows in Sect. 5.

2 Methods

2.1 Estimation of inclusion probability

Consider a finite populationU = {1, 2, . . . , N } and let sA ⊂ U denote the probability sample
of seeds, with known inclusion probabilities. Each seed is given a limited number of coupons
to recruit acquaintances who are then interviewed. Each new respondent is in turn given
coupons to recruit acquaintances. The individuals being recruited in the survey, denoted as
sB , are treated as a nonprobability sample since we do not know their inclusion probabilities.
Study protocols require that no individual can be included twice (sampled and recruited, or
recruited throughmore than one network). Hence, sA∩sB = ∅. Denote the combined sample
as s = sA ∪ sB .

Instead of making assumptions about the population network and the recruiting process as
it moves through the network, we will treat sB as a Poisson sample with unknown inclusion
probabilities to be estimated. Let nA denote the number of seeds, nB the number of individuals
being recruited, andn = nA+nB the combined sample size.Theprobability sample indicators
are I Ak = 1 if k ∈ sA, I Ak = 0 otherwise; similarly, the nonprobability sample indicators
are I Bk = 1 if k ∈ sB , I Bk = 0 otherwise. The first-order inclusion probability for sA is
π A
k = E

[

I Ak
] = Pr

[

I Ak = 1
]

satisfying π A
k > 0 for all k ∈ U and known for all k ∈ sA. The

first-order inclusion probability for the nonprobability sample is

π B
k = Pr [k ∈ sB | k ∈ sA] Pr [k ∈ sA] + Pr [k ∈ sB | k /∈ sA] Pr [k /∈ sA]

= 0 + ρk(1 − π A
k ). (1)

Because of the recruitment, the ρk and π B
k are unknown and not necessarily positive for all

k ∈ U . The first-order inclusion probability for the combined sample s = sA ∪ sB is then

πk = π A
k + (1 − π A

k )ρk, (2)

which is strictly positive for all k ∈ U , because sA is a probability sample.
We specify a parametric model, ρk = ρ(xk, θ) in (1), where θ are the true unknown

parameters and xk is a vector of known auxiliary variables, available in both the sA and
sB sample. We estimate the parameters via a likelihood-based method. We assume Poisson
sampling for sB , under which the log-likelihood function is
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ln L(θ) =
∑

k∈U\sA
I Bk ln

(

ρk

1 − ρk

)

+
∑

k∈U\sA
ln(1 − ρk)

=
∑

k∈U\sA
I Bk ln

(

ρ (xk, θ)

1 − ρ (xk, θ)

)

+
∑

k∈U\sA
ln(1 − ρ (xk, θ)).

However, the second term of the log-likelihood involves data not in sA or sB . Following
[2], we replace the second term by the unbiased Horvitz-Thompson [15] estimator (from
the sA sample) of its expectation, and compute the estimate ̂θ by maximizing the pseudo
log-likelihood

∑

k∈U\sA
I Bk ln

(

ρ (xk, θ)

1 − ρ (xk, θ)

)

+
∑

k∈U
ln(1 − ρ (xk, θ))(1 − π A

k )
I Ak
π A
k

We further assume a logistic model, logit (ρ(xk, θ)) = x�
k θ , for which the pseudo log-

likelihood is

�(θ) =
∑

k∈U\sA
I Bk x�

k θ −
∑

k∈U
ln

{

1 + exp
(

x�
k θ

)}

(1 − π A
k )

I Ak
π A
k

. (3)

We plug in the estimated parameterŝθ to obtain initial estimates, ρ̃k = ρ(xk,̂θ). Ideally, the
initial estimates ρ̃k would then calibrated to the nonprobability sample size

nB =
∑

k∈U
ρ̃k(1 − π A

k ), (4)

but this is not feasible because we do not observe xk forU \ (sA ∪ sB). We therefore estimate
the right hand side of (4) from the probability sample

∑

k∈sA

ρ̃k(1 − π A
k )

π A
k

, (5)

and find the constant α that minimizes
∣

∣

∣

∣

nB −
∑

k∈sA

αρ̃k(1 − π A
k )

π A
k

∣

∣

∣

∣

subject to the constraints αρ̃k ∈ [0, 1] for all k ∈ sA ∪ sB . The final estimates are then
obtained as ρ̂k = αρ̃k .

2.2 Dual-frame estimator

If πk from (2) were known for all k ∈ s, we could compute the unbiased Horvitz-Thompson
[15] estimator

∑

k∈s ykπ
−1
k of the total and the asymptotically unbiased Hájek [10] estimator

∑

k∈s ykπ
−1
k

(

∑

k∈s π−1
k

)−1
of the mean, which are dual-frame estimators based on the

combined sample. The Hájek estimator is standard because it does not require the population
size to be known (population size is often unknown in hard-to-reach populations) and it is
typically more efficient even if population size is known. Since ρk is unknown, we plug in
ρ̂k . Assuming π A

k is known for all the units in the sample, we then construct the “Combined”
estimators for the total and the mean of the variable of interest:
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̂Ty,com =
∑

k∈s

yk
π A
k + (1 − π A

k )ρ̂k
,

μ̂y,com =
∑

k∈s yk/{π A
k + (1 − π A

k )ρ̂k}
∑

k∈s 1/{π A
k + (1 − π A

k )ρ̂k}
. (6)

If π A
k is unknown for k ∈ sB , it can be approximated, as in the example of Sect. 4.
Under the assumed Poisson sampling model for recruiting, these estimators are design

mean-square consistent and asymptotically normal, as shown in ([16] Chapter 3). While we
do not expect the Poisson assumption to hold in the RDS setting, we conjecture that it is a
useful approximation under a variety ofRDS selectionmechanisms.We assess this conjecture
via simulation in Sect. 3.

The Combined estimator might be less efficient if the nonprobability sample size (number
of recruits) is large relative to the probability sample size (number of seeds). This setting
may be more favorable to standard RDS estimation. We therefore considered a convex com-
bination of our Combined dual-frame estimator and a classic RDS estimator. We chose the
VH estimator for the convex combination because it is probably the most commonly used
estimator in current RDS practice ([28]), and [8] states that the VH estimator performs better
than the SH estimator ([26]). The resulting “Convex” estimators of the total and mean are
then

̂Ty,convex = nA

nA + nB

∑

k∈s

yk
π A
k + (1 − π A

k )ρ̂k
+ nB

nA + nB

∑

k∈s

Nd−1
k yk

∑

k∈s d
−1
k

=
∑

k∈s

[

nA

nA + nB

1

π A
k + (1 − π A

k )ρ̂k
+ nB

nA + nB

Nd−1
k

∑

k∈s d
−1
k

]

yk

=
∑

k∈s
ŵk yk

μ̂y,convex =
∑

k∈s ŵk yk
∑

k∈s ŵk
, (7)

where dk is the network degree of individual k.

2.3 Variance estimation

Under the combineddesign,with general probability sampling for sA and the assumedPoisson
sampling for sB , the variance of (6) can be approximated by Taylor expansion. The variance
approximation is a function of first-order inclusion probabilities π A

k , second-order inclusion
probabilitiesπ A

k� = E[I Ak I A� ], and the unknownρk . If the samplingdesign for sA ismeasurable
(with π A

k� > 0 for all k, � ∈ U ), then it is easy to show that the combined design is also
measurable, allowing unbiased variance estimation for totals and approximately unbiased
variance estimation for (6) if the ρk were known. In practice, we plug in estimates ρ̂k for the
unknown ρk , treating π A

k + (1 − π A
k )ρ̂k as the combined inclusion probability; and we use

the standard with-replacement variance estimation approximation, which does not require
the second-order inclusion probabilities. The with-replacement approximation is available
in standard survey software.
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Similarly, the variance and variance estimator of (7) can be approximated by Taylor
expansion and

nA

{

(nA + nB)
(

π A
k + (1 − π A

k )ρ̂k

)}−1 + nBNd−1
k

{

(nA + nB)

(

∑

k∈s
d−1
k

)}−1

can be treated as the corresponding combined inclusion probability in standard survey soft-
ware.

Methods to account for the variability due to parameter estimation in ρ̂k include replication
approaches [27] and the estimating equations approach [2, 19]. In combining probability and
nonprobability samples in settings similar to the current RDS application, we have considered
replication methods (delete-a-group jackknife and balanced repeated replication) and the
estimating equations approach in simulation experiments. While the estimating equations
approach helped reduce the bias in the variance estimation and improved the coverage of
nominal 95% confidence intervals, it did so at the expense of increased root mean squared
error (RMSE) for the variance estimation and wider confidence intervals. The simple, with-
replacement approximation variance estimation performed better in terms of RMSE than the
replication and estimating equations approaches. Furtherwork to improve variance estimation
in the RDS context of this paper is ongoing.

3 Simulation

3.1 Simulation study design

We evaluate the proposed Combined estimator (6) and Convex estimator (7) and compare to
three standard RDS estimators (SH, VH, and SS) using an artificial population constructed
from the Project 90 study data. These data were collected between 1988 and 1992 in Col-
orado Springs, CO to study heterosexuals’ transmission of HIV, and have become a classic
example of network data on a hidden population. Several published studies [1, 5, 9] have
used Project 90 data to compare RDS estimators. As in the prior studies, we constructed an
artificial population consisting of the network subset with the largest connected component,
which includes 4430 individuals and 18,407 edges. The data include 13 binary attributes for
each individual, such as sex worker, pimp, and drug dealer, with value 1 indicating that the
individual has the attribute. Table 1 summarizes the population proportions for the 13 binary
attributes.

Table 1 Project 90 population
proportions for 13 binary
attributes

Attribute Proportion Attribute Proportion

Female 0.43 Retired 0.03

Sex worker 0.06 Housewife 0.06

Pimp 0.02 Disabled 0.04

Client 0.10 Unemployed 0.17

Drug dealer 0.08 Homeless 0.14

Drug cook 0.01 Nonwhite 0.26

Thief 0.03
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We consider two initial sample sizes (150 or 300) for the without-replacement probability
sample of seeds. The initial probability sample is subject to nonresponse, completely at
random, at one of three response rates (0.2, 0.3, or 0.4). From the responding seeds, RDS
recruiting is then employed, with a target final sample size of 150 (seeds plus recruits) in
every case. Seeds are each given three coupons. In the simulation, the recruiting stops when
the target sample size is achieved. Recruits always agree to participate and respond. Recruits
are selected without replacement, that is, the individuals already in the seeds or already being
recruited cannot be recruited again, as would be the case in practice. At initial seed sample
size of 300 and response rate of 0.4, the expected number of responding seeds is 120, so only
30 RDS recruits are needed, while at initial seed sample size of 150 and response rate of 0.2,
the expected number of responding seeds is 30, and 120 RDS recruits are needed.

Seeds are selected via simple random sampling. We have also conducted simulations in
which seeds are selected with probability proportional to degree (rarely feasible in practice).
Results are qualitatively similar and are not shown here.

We consider eight different recruitment behaviors: (1) random, in which three acquain-
tances are recruited at random with equal probabilities, if possible; (2) recruit frac-
tion, in which 0, 1, 2, or 3 acquaintances are recruited at random, with probabilities
(1/6, 1/6, 1/6, 1/2); (3) degree, in which recruitment probabilities are proportional to the
degrees of acquaintances; (4) inverse degree, in which recruitment probabilities are propor-
tional to the inverse degrees of acquaintances; (5) prefer female, in which females must
recruit female acquaintances, if possible, and males recruit males; (6) prefer pimp, in which
pimps must recruit pimp acquaintances, if possible, and non-pimps recruit non-pimps; (7)
expert female, in which everyone must recruit female acquaintances, if possible; and (8)
expert pimp, in which everyone must recruit pimp acquaintances, if possible. In the existing
literature, recruitment is assumed to be at random, but our approach allows for differential
recruitment.

For all the recruitment behaviors, we estimate the inclusion probabilities using the model

logit(ρk) = θ0 + θ1dk .

The model is misspecified for all the simulated recruitment behaviors, though it is somewhat
similar to (3) degree.

For a baseline comparison with RDS, we could consider using only the responding proba-
bility seeds for inference, ignoring the RDS recruits. Instead, we use an expanded probability
sample with expected number of required contacts equal to that of the RDS sample. For
example, if the probability sample response rate is 0.2, with 300 initial seeds and overall
target of 150 respondents (seeds plus recruits), then we expect to contact 390 people, with
(0.2)(300) + 90 = 150 respondents via RDS but only (0.2)(300 + 90) = 78 respondents
via probability sampling. We use the expanded probability sample as the baseline for a
“fair” comparison to RDS, though in practice it is often not possible to simply take a larger
probability sample.

For each initial seed sample size and seed response rate, we draw 1000 probability samples
of seeds. These probability samples are used to generate RDS recruits under each of the eight
recruitment behaviors. For each combination of seed sample and recruit sample, we estimate
the inclusion probabilities assuming Poisson sampling for the recruit sample and construct
the Combined estimator (6) and Convex estimator (7), along with estimated variances and
nominal 95%confidence intervals, for each of the 13 binary attributes.We also construct three
classic estimators (SH, VH, SS) along with estimated variances and nominal 95% confidence
intervals using the R package RDS [11]. Our baseline for comparison is the expanded simple
random sample with expected number of contacts equal to RDS.
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3.2 Simulation study results

We computed root mean squared error (RMSE) for all six estimators across all attributes,
recruitment behaviors, and simulation settings. To summarize the simulation results, we
ranked the six estimators from 1 (lowest RMSE) to 6 (highest RMSE) within each attribute
and recruitment behavior and averaged the ranks within each probability sample response
rate and initial seed sample size. Average ranks are shown in Table 2. The average rank of
SH is nearly 6 in most cases, indicating that it is almost always the worst estimator. The
VH and SS estimators have average ranks of approximately 5 and 4, respectively, so that
they are nearly always worse than our proposed Combined and Convex estimators, as well as
Baseline. All of the classic RDS estimators have lower average rank (improved performance)
for 150 seeds than for 300 seeds, reflecting increased waves of RDS recruiting and better
alignment with classic RDS assumptions. Our proposed Convex and Combined estimators
generally have the lowest average ranks, with greatest improvements over Baseline at the
lowest response rate. At the highest response rate, Baseline is competitive or better with our
proposed estimators.

We now focus in detail on the case of 300 initial seeds, response rate 0.3, and final sample
size 150, so that our simulation is comparable to the 264 initial seeds, response rate 0.34,
and final sample size 140 for the LGBT sample with recruitment condition in Table 2 of
[21]. We apply our methods to the application of [21] in Sect. 4. Results for the remaining
simulation settings in Table 2 are similar to those presented here and are provided in detail
in the supplemental material.

In our simulations, SH nearly always has the highest RMSE by a large margin.We remove
it from further consideration to avoid distorting the plots. We summarize the competitive
estimators SS, VH, Convex, and Combined, and compare to the Baseline estimator.

Figure 1 shows the bias for point estimates of the 13 attributes with eight different recruit-
ment behaviors. Because some estimation targets are small proportions, we chose not to
report relative biases, some of which would be very large. Though our proposed estimators
exhibit some bias, the bias does not lead to significant undercoverage of confidence intervals
and RMSEs tend to be better than Baseline.

Figure 2 shows boxplots of the RMSE ratios for the 13 attributes, with one set of boxplots
for each of the eight recruitment behaviors. In the ratios, RMSE for the Baseline estimator is
the numerator andRMSE for SS,VH,Convex, orCombined is the denominator.Higher values
are better, with RMSE ratios equal to one (solid reference line) indicating that no efficiency

Table 2 Average rank of RMSE among baseline, SH, VH, SS, combined, and convex estimators (lower is
better, average rank of 6 is worst possible) across all attributes and recruitment behaviors for each probability
sample response rate and initial seed sample size

Response Rate Initial Estimator

Seeds Baseline SH VH SS Combined Convex

0.2 300 2.94 5.89 4.71 3.72 1.74 1.99

150 3.65 5.62 4.27 3.32 2.24 1.89

0.3 300 2.27 5.93 4.81 3.80 2.13 2.06

150 2.63 5.86 4.67 3.69 1.92 2.22

0.4 300 2.09 6.00 4.82 3.82 2.46 1.82

150 2.18 5.88 4.79 3.83 1.91 2.41
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Bias of Point Estimate
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Fig. 1 Biases of point estimates of 13 attributes for each recruitment behavior, under simple random sampling
of 300 initial seeds and seed response rate of 0.3. Each point corresponds to bias for one estimator type and
one binary attribute. Results are based on 1000 simulated samples
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Fig. 2 Boxplots of RMSE ratios across all 13 attributes for each recruitment behavior and estimator type,
under simple random sampling of 300 initial seeds and seed response rate of 0.3. In each ratio, RMSE of the
Baseline estimator is the numerator and RMSE of SS, VH, Convex, or Combined is the denominator. Higher
values are better. The solid reference line at one corresponds to RMSE equal to that of the Baseline estimator.
The dashed reference line below one corresponds to the average RMSE (across binary characteristics) attained
by ignoring the RDS recruits and using only the initial probability respondents. Results are based on 1000
simulated samples

was gained by RDS relative to probability sampling with the same expected number of
contacts. An additional dashed reference line corresponds to the average RMSE ratio across
binary characteristics for the probability sample of initial seeds only, ignoring the RDS
recruits. Our proposed estimators almost always gain efficiency relative to ignoring RDS
recruits, even with a misspecified probability mechanism and propensity model that needs
to be estimated. Our proposed estimators dominate the classic RDS estimators and also tend
to be better than the (often infeasible) Baseline estimator with the same expected number of
contacts.
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Bias of Variance Estimate
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Fig. 3 Biases of variance estimates of 13 attributes for each recruitment behavior, under simple random
sampling of 300 initial seeds and seed response rate of 0.3. Each point corresponds to bias for one estimator
type and one binary attribute. Results are based on 1000 simulated samples

Figure 3 summarizes the bias of variance estimates across attributes and recruitment
behaviors. The Baseline variance estimator is unbiased. The biases in nearly all cases are
small and are comparable in magnitude between classic RDS bootstrap procedures and our
simple approach described in Sect. 2.3. While we have some preliminary simulation results
(not shown) for variance estimation that incorporates parameter estimation variability via
estimating equations, we found that the slight reduction in bias was accompanied by an
increase in variance and no improvement in confidence interval coverage.

Figure 4 summarizes results for estimation of variance as boxplots of relative RMSEs
across the 13 attributes and eight recruitment behaviors. Each relative RMSE has the RMSE
of the estimated variance in the numerator and the true variance (as approximated by Monte
Carlo) in the denominator. Lower values are better. The relative RMSE of our proposed
variance estimators is nearly always better than the variance estimators for SS and VH.
Further, performance of our variance estimators is fairly constant across binary attributes
and recruitment strategies, while SS and VH have considerably more variation.

Figure 5 summarizes the coverage of nominal 95% confidence intervals across the 13
attributes and eight recruitment behaviors. The Combined and Convex estimators generally
have coverage that is closer to nominal and less variable than the coverage of SS and VH.
Because many of the binary attributes are rare, confidence interval coverage even with the
pure probability sample is below the nominal level.

4 Application

We illustrate our dual-frame methodology with an application of RDS in the sampling of US
LGBT adults aged 18–55, as described in detail in [21]. This study, conducted by NORC at
the University of Chicago in 2017, began with a probability sample selected from NORC’s
AmeriSpeak® Panel. AmeriSpeak panelists are selected using rigorous design-based meth-
ods, beginning with a stratified multi-stage address-based sample of households from an
enhanced version of the US Postal Service’s Computerized Delivery Sequence (CDS) file,
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Fig. 4 Boxplots of relative RMSE of estimated variance across all 13 attributes for each recruitment behavior
and estimator type, under simple random sampling of 300 initial seeds and seed response rate of 0.3. Each
relative RMSE has RMSE of the variance estimator in the numerator and true variance (as approximated by
Monte Carlo) is the denominator. Lower values are better. Results are based on 1000 simulated samples
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Fig. 5 Boxplots of confidence interval coverage across all 13 attributes for each recruitment behavior and
estimator type, under simple random sampling of 300 initial seeds and seed response rate of 0.3. Horizontal
reference line is at the nominal coverage level of 95%. Results are based on 1000 simulated samples

with additional listing of over 80,000 mostly rural households not available in the CDS.
Both LGBT and non-LGBT panelists were selected in a stratified sample from the panel and
assigned to one of two experimental conditions: either to recruit their LGBT friends and
family into the study directly, or to nominate LGBT friends and family to be contacted by
NORC. Referrals who completed the survey were then asked to recruit or nominate (depend-
ing on the assigned experimental condition of the seeds) their LGBT friends and family, with
the study ending after four such rounds of referrals. In each round, respondents were allowed
up to four referrals.

Base weights for all seeds (probability sample panelists) were computed as the product
of the AmeriSpeak panel weight and the inverse of the selection probability from the panel
to the seed sample. These base weights were adjusted for differential nonresponse using
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standard weighting class adjustments and raked to population controls including age group,
gender, and race/Hispanic ethnicity. Denote by sA the set of all seed respondents (from either
experimental condition) and let {wA

k }k∈sA denote the corresponding adjusted weights. We
will treat sA as the probability sample and {wA

k } as the design weights.
We are interested in domain D, the set of all US LGBT adults aged 18–55. Among all

nA = |sA| = 409 random seeds who responded, there are |sA ∩ D| = 182 LGBT persons.
Using only the probability sample and the design weights, we can make approximately
unbiased estimates for theLGBTdomain and construct valid confidence intervals via standard
design-based techniques. These estimates will serve as the baseline for comparison to our
dual-frame estimates, which incorporate the referrals as well as the seeds.

Let sB denote the set of referral respondents, all of whom are LGBT. In this application,
nB = |sB | = 107 referrals completed the survey.

Wemodel the RDS referrals as a Poisson sample from D\sA andmodify (3) by restricting
to D,

�(θ) =
∑

k∈D\sA
I Bk x�

k θ −
∑

k∈D
ln

{

1 + exp
(

x�
k θ

)} (

wA
k − 1

)

I Ak ,

with x�
k = (1, dk). In our application, 10 of the 289 LGBT respondents (5 seeds and 5

referrals) were missing degree. We used hot-deck imputation for these missing degree values
within cells defined by LGBT status, race/ethnicity, and gender (missing degree among non-
LGBT seeds does not affect our estimation for LGBT domain characteristics).

The pseudolikelihood parameter estimates are

(̂θ0,̂θ1) = (−10.87915, 0.0024068).

Using the initial pseudolikelihood estimates ρ̃k , the estimated expected sample size in (5)
is 103.68, a slight (3.1%) underestimate of the target nB = 107. We then make the small
calibration adjustment by choice of α, as described in Sect. 2.1, to obtain the final ρ̂k .

In this application, we do not have sufficient information about the design to compute
the weights {wA

k }k∈sB for the RDS referrals sB . These weights are needed to compute our
combined dual-frame estimator. We statistically matched [2, 23, 30] each RDS referral to
a random seed and assigned the weight and stratum of the seed to the referral. We used
the StatMatch package [3] in R to conduct matching within classes defined by LGBT
status and race/ethnicity, with Gower’s distance function used to choose “nearby” donors
with respect to age, gender, and degree.

For each element in the combined LGBT sample, k ∈ (sA ∩ D) ∪ sB , we then computed
the combined weight as

ŵk = wA
k /{1 + (wA

k − 1)ρ̂k}
where wA

k is either from the original design or from matching.
Weused both the original designweights and the combined dual-frameweights to compute

estimates for 11 different survey items, seven of which are binary variables having to do with
smoking behavior:

• Have you smoked at least 100 cigarettes in your life? (smoke100)
• In the past 30 days, have you …

– …used e-cigarettes or other vaping products…? (ecig)
– …smoked regular cigars? (cigar)
– …smoked regular cigarillos? (cigarillo)
– …smoked little filtered cigars? (filtcigar)
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– …smoked marijuana or hashish? (marijuana)
– …smoked a blunt? (blunt)

The remaining four items are binary questions about experience of discrimination:

• Have you ever experienced discrimination, been prevented from doing something, been
hassled or made to feel inferior because of …

– …your sex (that is, because you are male or female) (discr_sex)
– …your race, ethnicity or skin color (discr_race)
– …your sexual orientation (that is, because you are—or you are perceived to be by

others—gay, lesbian, bisexual or straight) (discr_orie)
– …your gender identity (that is, because you are—or you are perceived to be by

others—a man or a woman) (discr_iden)

Point estimates and approximate 95% confidence intervals (CIs) for each of the 11 items
using only the probability sample and using the combined probability seeds with RDS refer-
rals are shown in Fig. 6. In each case, the variance estimator used to construct the CI is
the stratified with-replacement variance estimator available in standard survey software. For
the dual-frame estimator, we use the same strata as in the original probability sample. This
approach is justified in Appendix A, where we show that the combination of a stratified
sample with a Poisson sample from its complement is a stratified sample with the original
stratification.

In all cases exceptdiscr_iden, the dual-frame Combined point estimate is contained in
the probability CI and is usually quite close to the probability point estimate, indicating that
the RDS referrals have been successfully added to the probability sample without generating
excess bias. In all but one case (cigarillo), the Combined standard error and CI width
is smaller than the probability-only standard error and CI width: on average, the dual-frame
values are 0.835 times the probability-only values. While this factor of 0.835 is estimated, it
is comparable and slightly higher than 0.794 = √

182/(182 + 107), the factor if the decrease
were purely due to increasing sample size by 107 LGBT persons.

5 Discussion

We have considered respondent-driven sampling initialized with a relatively large proba-
bility sample of seeds and with relatively short recruitment chains, so that assumptions of
standard RDS estimators are not met. Recent literature shows that such samples can occur
in practice. For such samples, we propose a dual-frame estimation approach that treats the
RDS recruits as a nonprobability sample with unknown inclusion probabilities, estimates
the unknown inclusion probabilities using pseudolikelihood, combines the probability seeds
with the nonprobability recruits using dual-frame methods, and produces point estimates
and variance estimates using weighted estimation in standard survey software. In a limited
simulation study with Project 90 network data, our proposed estimators perform well and
dominate existing RDS estimators with respect to mean squared error and confidence interval
coverage, for a range of initial sample sizes and response rates for random seeds, recruitment
behaviors, and binary outcomes. The estimation approach yields sensible estimates with real
data from an RDS study of LGBT smoking behavior, and appears to have promise in the
setting considered here, in which classical assumptions of RDS estimation are not met.

Under some designs, it is possible to determine the inclusion probabilities under the
seed sampling design for any individual (seed or recruit). This was not possible in our
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Fig. 6 Point estimates and approximate 95% confidence intervals of eleven binary characteristics from the
NORC pilot study, using the probability-only sample of seeds (left, magenta with solid circle) and the dual-
frame sample combining seeds and referrals (right, purple with solid triangle). See text for description of the
eleven variables

empirical example, so we relied on sample matching to assign inclusion probabilities under
the seed sampling design for the recruits. An interesting direction for further research would
be to explore the implications of such matching for properties of the combined estimator.
Comparisons to other approaches for combining probability and nonprobability samples
would also be of interest. Finally, variance and confidence interval estimators that account
for uncertainty due to parameter estimation while remaining robust to misspecification of the
recruitment mechanism would be worthy of further exploration.

Supplementary information In the supplementarymaterial, we include versions of Fig. 1
through Fig. 5 for all simulation settings described in Table 2.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40300-023-00241-8.
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Appendix A

The combination of a stratified sample with a Poisson sample from its complement is a
stratified sample with the original stratification. It suffices to show that the combined sample
membership indicators are uncorrelated across strata, so that estimates from different strata
are uncorrelated. Let elements k, � belong to different strata under the original design, so that
Cov(I Ak , I A� ) = 0. Then, because I Bk and I B� are conditionally independent under Poisson
sampling from the complement of the A sample, we have

Cov(Ik, I�) = Cov
(

I Ak + (1 − I Ak )I Bk , I A� + (1 − I A� )I B�

)

= Cov
(

E
[

I Ak + (1 − I Ak )I Bk

∣

∣

∣ sA
]

,E
[

I A� + (1 − I A� )I B�

∣

∣

∣ sA
])

+E
[

Cov
(

I Ak + (1 − I Ak )I Bk , I A� + (1 − I A� )I B�

∣

∣

∣ sA
)]

= Cov
(

I Ak + (1 − I Ak )ρk, I
A
� + (1 − I A� )ρ�

)

+E
[

(1 − I Ak )(1 − I A� )Cov
(

I Bk , I B�

∣

∣

∣ sA
)]

= 0.
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