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Abstract 

The Fellegi-Sunter record linkage paradigm specifies the functional relationship between 

agreement probabilities and match weights for each identifier. This paradigm assumes 

conditional independence of identifier agreements. However, many identifier agreements 

are, in fact, dependent. For example, within the set of non-matched pairs, if we know the 

first names agree, then it is more likely that last names also agree since name distributions 

vary by ethnicity. In this paper we present an approach to specify and estimate agreement 

probabilities, the relationship between them, and the total number of links without the use 

of training data. This, in turn, yields estimates of match rates (i.e., the proportion of matches 

among a set of pairs) for a given identifier agreement pattern. 
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1. Record Linkage Overview 

 

Record Linkage describes the process of comparing records (those being compared called 

a pair) on a single file or multiple files to infer which represent the same entity, be it a 

person, business, address, or something else. Comparisons are made by looking at the 

similarity of the values for identifiers that are on the two records being compared. For 

example, if records represent persons, we can look at whether or not values agree (that is, 

they are exactly or more-or-less the same1) for first name, last name, year-of-birth, sex, 

race, etc. What makes record linkage different from a standard data join is that it allows for 

some discrepancies between the fields used for comparison. For this reason, sometimes it 

is called fuzzy matching. 

 

There are many ways we can imagine performing such an analysis, like developing ad-hoc 

rules to infer which pairs are matches (i.e., they represent the same entity) and which pairs 

are non-matches. However, the standard approach is based on a methodology whose 

application was statistically formalized by Ivan Fellegi and Alan Sunter.2 Here, for each 

pair being scrutinized, we look to see if they agree on identifiers in common on the files 

being linked. In the simplest development of this method, each identifier comparison will 

be classified as an agreement (when the values are exactly or nearly the same) or a non-

agreement (when they are substantially different).   

 

                                                 
1 The exact demarcation between agreement and non-agreement does not affect the theoretical 

treatment. 
2 See Fellegi and Sunter (1969). 



When the values for the set of identifiers selected for the analysis (e.g., first name or day-

of-birth, etc.) agree, the pair weight (total score) is incremented by the agreement weight 

specific to that identifier. However, if these identifiers do not agree, the pair weight is 

decremented by the non-agreement weight3 specific to that identifier. The sum of all these 

agreement and non-agreement weights is the pair weight. At this point, we defer the 

discussion of how these weights should be set, and stipulate that the pair weight is 

compared to two cutoffs for disposition (inference if the pair is a match or a non-match): 

 

 If the pair weight is greater than the upper cutoff, the pair will be linked, meaning 

we have inferred that the paired records do represent the same entity (i.e., they are 

a match). 

 If the pair weight is less than the lower cutoff, the pair will be left unlinked, 

meaning we have inferred that the paired records do not represent the same entity 

(i.e., they are not a match). 

 If the pair weight is in between the lower and upper cutoffs, then we will further 

scrutinize it (usually with human judgment) to determine if it should be linked. 

Fellegi and Sunter demonstrated that identifier weights that are set in accordance with 

certain algebraic formulas, as shown below, have the property of minimizing the expected 

Type I error for a given expected level of Type II error—i.e., they are uniformly most 

powerful. 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =
ln (𝑀𝑖 𝑈𝑖)⁄

ln (2)
 

and 

𝑁𝑜𝑛-𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =
ln ((1 − 𝑀𝑖) (1 − 𝑈𝑖))⁄

ln (2)
 

 

The computation then depends on knowing the true values for the (M) probability that  

values agree for a specific identifier, when they come from matches (records representing 

the same entity) and the (U) probability that values agree for a specific identifier when they 

come from non-matches (records representing different entities). For example, we can 

assume that there is about a 1 in 12 chance (i.e., the U-probability for month of birth is  
1

12
≈ .0833 ) that two records representing different persons will have the same value for 

month-of-birth (i.e., by chance) and a much higher (M) probability (say at least above 90%) 

that they have the same value when they do represent the same person (the rare cases of 

non-agreement occur in the case of a transcription error).  

 

To actually compute weights from the above formulas, we need to know the M- and U- 

probabilities for each identifier used in the linkage analysis. In actuality, however, these 

are usually unknown but need to be estimated, such as by using training data. Here, the 

training data would be records from the same files where we knew which pairs were 

actually matches and which were not. Then, computing the probabilities would only require 

simple frequency tabulations. 

 

More often, training data are not available. In these cases, these values can be estimated 

using machine learning or a statistical fitting procedure (Winkler 2011). For this, Monte 

                                                 
3 Both agreement and non-agreement weights are summed, but whereas agreement weights are 

positive, non-agreement weights are negative and so their addition decrements the pair weight. 



Carlo Markov Chain (MCMC) is one of several methods that can be used. Even if we can 

accurately estimate the M- and U- probabilities, the cutoffs for assigning pairs as matches 

or non-matches depend on how the linked data will be used for further analysis. In some 

cases, the analysis will require the use of only links that have a very high probability of 

being matches (i.e., we are focusing on minimizing Type I error). In other cases, we can 

tolerate a higher probability of matching error but want to try to identify as many links as 

possible (i.e., we are focusing on minimizing Type II error). 

 

Even if the weights can be estimated with good precision, it is unclear of how to set the 

cutoffs from a theoretical perspective. From a practical view, the objective of the exercise 

is as follows:  

 

 The upper cutoff is set to be the pair score above which pairs can almost certainly 

be inferred to be matches. 

 The lower cutoff is set to be the pair score below which pairs can almost certainly 

be inferred to be non-links. 

Of course, operationalizing “almost certainly” is quite indefinite, and might well be 

considered to depend on how the linked records will be used subsequently for analysis. If 

Type I errors are to be minimized, this would suggest using higher cutoff scores, and if 

Type II errors are to be minimized, this would suggest using lower cutoff scores. Again, 

the actual selection of these values is left to human review and judgment. Additionally, 

unless the clerical review for pairs between the lower and upper cutoffs brings new data to 

bear on a specific pair, it is unclear that human judgment can better ascertain whether a 

given pair is a match or a non-match that using the pair weight. 

 

2. Fitting Approach 

 

For many reasons, developing formulaic guidance for setting cutoffs, rather than needing 

to rely on human judgment, would be desirable. Here, being able assign each pair an 

estimate of the match rate (by which we mean, the proportion of pairs having the same 

identifier agreement pattern, such as, first names agree, middle initials do not agree, and 

last names agree, which are matches) would enable users of the linked data to precisely set 

the linkage cutoffs. For example, if the cutoff is set at a point where the probability of a 

Type I error is less than 1%, we would assign all pairs with an estimated link probability 

of 99% or more to the link set. 

 

Generally, the Fellegi-Sunter paradigm is well suited to estimating the match probabilities. 

Assuming that among matches and among non-matches, agreement for each identifier is a 

Bernoulli random variable, and agreement for each identifier is independent of the 

remaining identifiers (i.e., by naïve Bayes), then the probability that matches will have a 

given agreement pattern is shown below: 

 

𝑃(𝐴𝑀) = ∏ 𝑀𝑖
𝑎𝑖𝑛𝑎

𝑖=1 ∙ (1 − 𝑀𝑖)(1−𝑎𝑖) (Eq. 1) 

where: 

Ai is the agreement status, 1 – Agree, 0 – Not Agree, for identifier i 

Mi is probability of match for identifier i 

 

and the expected number of matched pairs having this pattern is 

 



𝐸(𝑁𝑀) =  𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑇𝑜𝑡𝑎𝑙 ∙ 𝑃(𝐴𝑀) (Eq. 2) 

 

Similarly, the probability that a non-matched pairs will have a given agreement pattern is 

given by: 

 

𝑃(𝐴𝑈) = ∏ 𝑈𝑖
𝑎𝑖𝑛𝑎

𝑖=1 ∙ (1 − 𝑈𝑖)(1−𝑎𝑖) (Eq. 3) 

 

and the expected number of non-matched pairs having this pattern is 

 

𝐸(𝑁𝑈) =   𝑁𝑜𝑛-𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑇𝑜𝑡𝑎𝑙 ∙ 𝑃(𝐴𝑈) (Eq. 4) 

 

One form the estimation can take is to compare the estimated number of pairs with a given 

identifier agreement pattern (i.e., a specific agreement vector) to the actual number of pairs 

(see Table 1): 

 

 

Then, to evaluate the overall agreement level, we can compute a chi-square goodness-of-

fit statistic. We would expect that the set of parameters that minimizes this chi-square value 

(summed over all agreement vectors) should closely agree with the actual, and presumably 

unknown, parameter values. Then, our fitting problem reduces to an optimization problem. 

Note that in addition to seeking the values for the agreement probabilities that minimize 

the chi-square statistic, we need also seek (as another parameter to be estimated) the value 

of the number of matches among the full set of pairs.  

 

So, if the M- probabilities, U- probabilities, and the number matched pairs among all of the 

pairs are known, we can estimate the total number of matched pairs and unmatched pairs 

that will have a given agreement pattern. Then the match rate (probability of a randomly 

selected pair being a match) for the agreement pattern, A, can be estimated as follows: 

 

𝑃(𝑀𝐴)̂ =
𝐸(𝑁𝑀𝐴

) 

𝐸(𝑁𝑀𝐴
) +  𝐸(𝑁𝑈𝐴

) 
 

 

where 

 

𝐸(𝑁𝑀𝐴
) is the expected number of matched pairs with agreement pattern A 

𝐸(𝑁𝑈𝐴
) is the expected number of unmatched pairs with agreement pattern A 

 

In the absence of any information about the true values of these parameters, it is natural to 

seek a set of parameter estimates that comes closest to matching the counts associated with 

each agreement vector. 

 

Table 1:  Example Agreement Vector and Associated Statistics 
Agreement Vector Associated Statistics 

A1 

 

First 

Name 

A2 

 

Last 

Name 

A3 

Year 

of 

Birth 

A4 

Month 

of 

Birth 

A5 

Day 

of 

Birth 𝐸(𝑁𝑀) 𝐸(𝑁𝑈) 

Expected 

Total 

Pairs 

Actual 

Pairs Chi-Square 

1 0 1 1 1 500 50 550 520 
(550-520)2 

550 



This leads us to use the chi-square goodness-of-fit statistic as the objective function that 

we seek to minimize: 

 

Χ2 =  ∑
(𝑁𝐴−𝑁�̂�)2

𝑁𝐴
𝐴   (Eq. 5) 

where, 

 

𝑁𝐴 is the number of pairs with agreement pattern A, and 

𝑁�̂� = 𝐸(𝑁𝑀𝐴
) +  𝐸(𝑁𝑈𝐴

)  is the estimated number of pairs with 

agreement pattern A 

 

To find the parameters that do yield this best fit, i.e., min(Χ2), we use a Newton-Raphson 

search methodology.4 We start with a guess of parameter values. For our guesses, we 

(arbitrarily) use the value 0.9 for M-probabilities and the value 0.1 for U-probabilities. 

Also, our guess for the number of matched pairs is equal to half of the total number of pairs 

being analyzed. Next we seek to determine the direction (in the multi-dimensional 

parameter space) of maximum improvement (reduction) of the objective function. We 

determine this direction by estimating the partial derivatives of the objective function with 

respect to each of the parameters. Each partial derivative is estimated by increasing the 

parameter associated with it by a small amount (ΔP) and observing how this changes the 

objective function. We estimate the partial derivative for each parameter i as 

 

𝜕′�̂� = ΔO / ΔP. 

 

The vector of the full set of partial derivatives (𝜕’𝑖̂ , 𝜕’2̂, … , 𝜕’𝑛)̂  is the gradient and estimates 

the direction of maximum increase of the objective function. Since we seek to minimize 

the objective function, we actually want to more in the directly opposite direction. 

 

Now that we have an estimate of the direction of maximum improvement, we need to 

estimate the optimal interval to move in this direction. This is done by estimating the first 

and second derivatives along the vector of improvement. For the first derivative, this is 

done by moving a small amount on this vector, but here we are simultaneously adjusting 

all of the parameter values by the magnitude of its component (i.e., the partial derivative 

for it) and seeing how this changes the objective function. To estimate the second 

derivative, we take a second step in the same direction and estimate  

 

𝑓’’̂ = (ΔO1– ΔO2) / ΔP, 

 

where,  

 

ΔO1 is the change in objective function from P0 to P1, O(P1) – O(P0) 

ΔO2 is the change in objective function from P1 to P2, O(P2) – O(P1) 

 O(P) is the value of the objective function with parameter set P 

 

With this, we estimate the optimal step size as 

 

Optimal Step Size = -𝑓’̂ (objective function) / 𝑓’’̂ (objective function). 

 

                                                 
4 See Adler 2003. 



Based on these estimates of the direction and magnitude of the step for best improvement, 

we are able to generate a substantially improved set of parameters with respect to 

minimizing the objective function. At this point, we have completed the first iteration of 

the fitting, resulting in an updated set of parameter estimates.  

 

We continue to iterate this approach until we are no longer making improvement to the fit. 

 
2.1 Testing of Fitting Methodology  

To test the basic functioning of the approach, we ran it on a simulated set of pairs. For this 

simulation, we used an agreement identifier vector with five components. We generated 

50,000 matched pairs and 1.2 million unmatched pairs. For the matched pairs, for each or 

the five identifiers, we assigned an M probability specific to it. Thus for the first identifier, 

the M probability was set (based on generation from a pseudo random number generator) 

to be 0.9393. This means that for the generated matched pairs, approximately 93.9% were 

shown with agreement for the first identifier. For the unmatched pairs, for each of the five 

identifiers, we assigned a U probability specific to it. 

 

Having run the optimization algorithm on the full set of pairs obtained these estimates of 

the M- and U- probabilities: 

 

In terms of the predicted and actual match rates we obtained these results: 

 

 

3. Extension to Include Missing Agreements 

 

In record linkage analyses, it is usually the case that for some of the identification variables, 

the value for a given record is missing. For example, if the linkage was for individual 

persons, in some cases one or more of the date-of-birth fields, middle initial fields, or other 

Table 2:  M- and U- Probability Estimates Compared to Actual Values 
 Matched (M-Probabilities) Unmatched (U-Probabilities) 

Identifier 

Simulation 

Parameter 

(Target) Actual Prop. Identifier 

Simulation 

Parameter 

(Target) 

Actual 

Prop. 

Simulation 

Parameter 

(Target) 

A1 93.93% 94.06% 94.09% 6.11% 6.13% 6.13% 

A2 94.42% 94.59% 94.57% 9.81% 9.80% 9.80% 

A3 99.12% 99.08% 99.11% 9.12% 9.12% 9.12% 

A4 87.02% 86.95% 86.95% 6.51% 6.50% 6.51% 

A5 98.59% 98.59% 98.61% 8.73% 8.72% 8.73% 
       

Table 3:  Selected Results*, by Agreement Vector Values 
 

Agreement Vector 

Actual 

Count 

of Recs. 

Estim. 

Count 

of Recs. 

Actual 

Valid 

Match Rate 

Estim. 

Valid 

Match Rate 

Goodness  

of Fit 

Statistic A1 A2 A3 A4 A5 

No No No Yes No 55,012 54,857 0.0% 0.0% 0.44 

No Yes No No No 85,542 85,624 0.0% 0.0% 0.08 

No Yes No No Yes 8,327 8,189 0.1% 0.0% 2.34 

Yes No No No Yes 4,971 4,923 0.1% 0.1% 0.47 

Yes No Yes No No 5,156 5,169 0.1% 0.1% 0.03 

Yes Yes Yes No Yes 5,694 5,700 99.2% 99.1% 0.01 

Yes Yes Yes Yes No 574 571 93.6% 93.2% 0.01 

          165,276 165,032     3.38 

*To reduce table size, selection of agreement vectors shown on this table was random. 



identifier fields may be missing. To account for these occurrences, the fitting model 

requires some adaptation. In terms of computing the probability that the matched or 

unmatched pair may have a specific agreement pattern A, it is simple enough to exclude 

missing identifiers from the computation. That is we exclude each i with missing agreement 

status from the products (see Eq. 1 and Eq. 3, above).  

 

However, instead of then multiplying this probability by the total number of matches (or 

total number of non-matches, as in Eq. 2 and Eq. 4, it is instead multiplied by the estimated 

number of matches (or the estimated number of non-matches) with agreement pattern P: 

 

𝐸(𝑁𝑀) =  𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑃
̂ ∙ 𝑃(𝐴𝑀) 

𝐸(𝑁𝑈) =   𝑁𝑜𝑛-𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑃
̂ ∙ 𝑃(𝐴𝑈) 

 

The estimated number of matches and non matches with agreement pattern P are computed 

as 

 

𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑃
̂ =  𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑇𝑜𝑡𝑎𝑙  ∙ 𝑁𝑃 𝑁𝑇𝑜𝑡𝑎𝑙⁄  

𝑁𝑜𝑛-𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑃
̂ =  𝑁𝑜𝑛-𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑇𝑜𝑡𝑎𝑙  ∙ 𝑁𝑃 𝑁𝑇𝑜𝑡𝑎𝑙⁄  

 

where, 

 

 𝑁𝑃 is the number of pairs with missing pattern P 

 

By missing pattern, we mean the vector of agreement identifiers’ missing statuses. For 

example, assume that the linkage process uses First Name, Middle Initial, Last Name, Year 

of Birth, Month of Birth, and Day of Birth and the agreement status is missing for Middle 

Initial, Year of Birth, and Month of Birth (see Table 4).  

 

 

Then the agreement vectors falling under this missing pattern would be as follows (See 

Table 5): 

 

 

Table 4: Missing Pattern 
Agreement Value Missing Status 

A1 

First Name 
A2 

Middle Initial 
A3 

Last Name 
A4 

Year of Birth 
A5 

Month of Birth 
A6 

Day of Birth 

0=No 

(Present) 
1=Yes 

(Missing) 
0=No 

(Present) 
1=Yes  

(Missing) 
1=Yes 

(Missing) 
0=No 

(Present) 

Table 5:  Agreement Vectors Falling Under (See Table 4, Above) Missing Pattern 
Identifier Agreement Status*: 

A1 

First Name 
A2 

Middle Initial 
A3 

Last Name 
A4 

Year of Birth 
A5 

Month of Birth 
A6 

Day of Birth 

No - No - - No 

No - No - - Yes 

No - Yes - - No 

No - Yes - - Yes 

Yes - No - - No 

Yes - No - - Yes 

Yes - Yes - - No 

Yes - Yes - - Yes 

*("-" indicates agreement status is missing) 



Then, if among the 1.5 Million pairs under analysis, 20,000 had this missing pattern, then 

the estimated number of matches, with this missing pattern would be 𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑃
̂  = 

𝑀𝑎𝑡𝑐ℎ𝑒𝑠𝑇𝑜𝑡𝑎𝑙
̂ ∙ 20,000 1,500,000⁄ . Each identifier agreement pattern A falling under this 

missing pattern P would apply this ratio (20,000 / 1,500,000) to the initial estimated 

number of pairs (see Eqs. 2 and 4) of having the identifier pattern.. This adjusted estimate 

would then be compared to the actual counts to compute the goodness of fit statistic (see 

Eq. 5 above). 

 

4. Relaxation of Assumption of Agreement Non-Independence 

 

Real linkage analysis diverges from the naïve Bayes probability that assumes independence 

of identifier agreements among matches and non-matches. For example, if we are linking 

business locations using address information, then two different businesses within the same 

ZIP code are much more likely to have a common street name than if they were located in 

different ZIP codes. For this extension, we focus our attention on non-matches (rather than 

on matches). Also, we only model the simplest level of interaction among the identifiers, 

that being pairwise. This is not to say that interactions will not also occur among matched 

pairs, or there will not be more than two-way interactions. On the other hand, the goal of 

this research was to investigate whether the optimization routine could be modified in a 

way that allows some of interactions to be estimated as part of the process of generating 

estimates of the first-order M- and U- probabilities. So here we were looking for a 

straightforward yet robust way to include interactions as part of the estimation process. The 

way we have proceeded is to consider there to be an odds-ratio adjustment associated with 

each pair of identifiers. So, if there are four identifiers, for example (linking addresses):  

 

1. Address Number 

2. Street Name 

3. City 

4. State 

then the 4C3 = 6 odds-ratio adjusters to be estimated would be 

 

 
Then we determine the operative odds adjusters as those for which both identifiers are in 

agreement. The remaining odds adjusters (i.e., those for which either or both of the 

components are in non-agreement) are excluded in the odds adjustment computation. For 

example, if the identifier agreement pattern is:  

Table 6:   Odds Adjusters with 4 Agreements (4-dimensional agreement vector) 
Odds Adjuster Identifier A  Identifier B 

1 
A1 

(Address Number) 
↔ 

A2 

(Street Name) 

2 
A1 

(Address Number) 
↔ 

A3 

(City) 

3 
A1 

(Address Number) 
↔ 

A4 

(State) 

4 
A2 

(Street Name) 
↔ 

A3 

(City) 

5 
A2 

(Street Name) 
↔ 

A4 
(State) 

6 
A3 

(City) 
↔ 

A4 

(State) 



 
Then the operative odds adjusters for this pattern would be Odds Adjuster 2 (A1↔A3), 

Odds Adjuster 3 (A1↔A4), and Odds Adjuster 6 (A3↔A4). The full odds-adjustment is 

simply the product of all the operative odds adjusters. To compute the adjusted probability 

that a matched pair will have a given agreement pattern, we first convert the probability 

computing under the naïve-Bayes assumption into odds 

 

OddsNB = PNB / (1 – PNB) 

 

 The odds is then multiplied by the product of the operative odds adjusters 

 

 OddsAdj = OddsNB x {Odds Adjuster 2} x {Odds Adjuster 3} x {Odds Adjuster 6} 

 

and then this adjusted odds value is then converted back into an adjusted probability 

 

PAdj = OddsAdj / (1 + OddsAdj). 

 

To test the efficacy of this approach in accounting for agreement interactions, we need to 

generate a set of simulated pairs which have these interactions. This is done by generating 

each pair’s agreements sequentially, but making the probability used for simulating some 

of the later agreements to be dependent on the simulated agreement status of previous 

agreements. So for matches, we might say that the first agreement has a Bernoulli 

distribution of 

 

P(A1=1) = U1 

P(A1=0) = 1 - U1 

 

For the second agreement, the distribution is dependent on the value of the first agreement 

status: 

 

P(A2=1 | A1 = 0) = U2,1 

P(A2=1 | A1 = 1) = U2,2 

where U2,2 ≠ U2, 1 

 

Using randomly generated pairs with interactions for the agreement components for 

unmatched pairs (see Appendix for fuller specification of the simulated pairs), we obtained 

these results presented as regression fits. Here we are fitting the actual match proportion to 

the estimated match proportion (in Figure 1 we show the fitting with no interaction 

parameters and in Figure 2 we show the fitting using all two-way interaction parameters, 

i.e., odds-adjusters). The individual records being analyzed are all the possible values of 

the agreement vector: 

 

Table 7: Agreement Vector 
A1 

Address Number 
A2 

Street Name 
A3 

City 
A4 

State 

1 

(Agreement) 

0 

(Non-Agreement) 

1 

(Agreement) 

1 

(Agreement) 



 
Figure 1: Actual vs. Modeled Proportion Matches by Agreement Vector – No Interaction 

Parameters 
 

  
Figure 2. Actual vs. Modeled Proportion Matches by Agreement Vector – With Interaction 

Parameters. 
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We see that indeed the use of the odds adjusters to account for interactions does, in fact, 

substantially improve the fit from R2 = 0.9681 to R2 = .9738. 

 

Conclusion 

 

The basic approach laid out in this paper does produce quite good estimates of the M- and 

U- probabilities, the total number of matched pairs, and the proportion of matches among 

pairs with the same agreement pattern using simulated pairs with independent agreements. 

Additionally, modifications made to handle missing agreements likewise function well and 

enable this method to be applied to actual record linkage problems. The work presented in 

this paper yields a proof of concept that the extension to enable adjustment for interactions 

can be included in the model fitting with improvement over the basic model in the face of 

agreement interactions. It is likely that the parameterization of the interactions can be 

improved with work. At a minimum, it could include agreement interactions for matches 

as well as non-matches (which is the extent of the current modeling work). Also, the use 

of more than two-way interactions could be explored. In this case, care must be taken so 

that the optimization problem is not over-parameterized. Perhaps this concern can be 

addressed by making a basic fit using the naïve Bayes assumption and then using the fitted 

pairs to evaluate which interactions seems most significant within them. Then, the 

optimization can be set up to evaluate parameters that enable fit specifically to these 

interactions and not insignificant ones.  
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Appendix: Development of Simulated Pairs for Testing Inclusion of 

Interaction Terms 

 
These were the parameters used for the simulation created to test impact of inclusion of 

odds-adjusters in fitting model: 

 

Matched pairs had the M-probabilities 

 

M1=0.862, M2=0.995, M3=0.944, M4=0.980, M5=0.954 

 

Unmatched pairs were randomly assigned (with equal probability) to two pools 

with different U- probabilities: 

 

Pool 1: U1,1=0.0043, U1,2=0.0491, U1,3=0.0014, U1,4=0.0218, U1,5=0.0150 

 

Pool 2: U2,1=0.0794, U2,2=0.0017, U2,3=0.0593, U2,4=0.0764, U2,5=0.0625 

 

https://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf.


There were no interactions for matched pairs, but the interactions for unmatched 

pairs were… 

 

 P(A2=1 | A1 = 0) = U2,i 

 P(A2=1 | A1 = 1) = 1.75 x U2,i 

 

 P(A3=1 | A1 = 0 or A2 = 0) = U3,i 

 P(A3=1 | A1 = 1 and A2 = 1) = 2.35 x U3,i 

 

 P(A2=1 | A3 = 0) = U4,i 

 P(A2=1 | A3 = 1) = 0.5 x U4,i 

In addition to these interactions, we further complicated the data set by creating duplicate 

records that simulate the relationships shown between records for different members of the 

same household. The idea here is that generally household members will have some 

characteristics in common, such as address and last name and others not in common, such 

as first name and date-of-birth. For a randomly selected set of 25% of the originally 

generated match records, we generated a single duplicate record (See Table A-1 below) 

represented to be a non-match that had all of the same identifier agreements statuses, except 

for two of the randomly selected agreeing identifiers they were re-set to non-agreement. 

 

 

Table A-1: Example Creation of Duplicate Records 
Record 

Type 

Match 

Status 

Agreement Status Vector 

A1 A2 A3 A4 A5 

Original Match 1 1 1 0 1 

↓ ↓ ↓   ↓*   ↓* ↓ ↓ 

Duplicate Non-Match 1 0 0 0 1 

*Note: A2 and A3 changed from Agreement to Non-Agreement 

       


