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The 2022 Hansen Lecture gave a broad overview of the use of models in
survey sampling, with emphasis on modeling approaches to incorporat-
ing auxiliary information in survey estimators. This discussion expands
upon some issues in model-assisted estimation, exploring data needs and
the availability of multipurpose weights for advanced modeling
methods.
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It is my honor to have the opportunity to discuss this article, which formed the
basis of the 2022 Hansen Lecture by Professor Valliant. While the article does
an excellent job of summarizing the technical content reviewed in the lecture,
it does not fully capture Professor Valliant’s rich anecdotes and personal remi-

Statement of Significance

Model-assisted estimation is a general class of methods for incorporating
population auxiliary information into survey estimators. Flexible models
and methods employed in such estimators include linear models, linear
mixed models, kernel regression, splines, additive models, neural nets,
shrinkage and selection procedures, and tree-based methods, among
many others. Even with these advanced modeling methods, the resulting
model-assisted estimators can typically be expressed (at least approxi-
mately) in terms of weighted estimates with multipurpose weights, appli-
cable to any study variable.
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niscences about Morris Hansen that made the live presentation such a pleasure
to attend. Special thanks to the organizers and supporters of the Hansen
Lecture series for this great service to those of us interested in the theory and
practice of surveys.

In my experience, this survey interest group is a pragmatic bunch, always
willing to derive benefits from models whenever it makes sense to do so.
Models are extremely useful for organizing and communicating thoughts, for
deriving estimators with good properties, for assessing expected behavior
under ideal conditions, and for identifying nonideal conditions. At the same
time, the survey community maintains healthy skepticism about those models.
In a production environment for a complex survey, methods have to work
again and again: for case after case (often thousands) and study variable after
study variable (often hundreds). Estimation techniques need to be robust under
model misspecification because methods are often applied generically (e.g.,
the same calibrated survey weights applied to all study variables) and any pro-
posed model is certainly misspecified for some study variables.

My own research and practice has tended to emphasize model-assisted
(MA) estimation: given covariates xk, specify a working model
yk ¼ lðxkÞ þ ek, with fekg independent and identically distributed ð0; r2Þ;
write down the (infeasible) “estimator” mNð�Þ of lð�Þ that would be computed
if the entire population were observed; create a feasible plug-in survey-
weighted estimator bmNð�Þ; and construct an MA estimator of the y-total as a
model-based prediction plus a design-bias adjustment:

MAðykÞ ¼
X
k2U

bmNðxkÞ þ
X
k2s

yk � bmNðxkÞ
pk

:

Under mild conditions, such MA estimators tend to be asymptotically design-
unbiased and consistent even if the model is misspecified, with smaller var-
iance than the Horvitz–Thompson estimator HTðykÞ ¼

P
k2s ykp�1

k if the
model is reasonably specified. Many MA estimators can be constructed with
this basic recipe; see Breidt and Opsomer (2017) for a partial review.

One other potential advantage of the MA approach is relevant in cases
where inclusion probabilities pk are not completely known but require some
model specification and estimation. This can occur due to coverage errors,
nonresponse, or other selection effects, as noted in Professor Valliant’s
paper. In such cases, the MA estimator is doubly robust by construction:
approximately unbiased if either the y-model lð�Þ or the p-model is correctly
specified.

Specification of a linear working model lðxkÞ ¼ x>k b in the MA recipe leads
to the class of generalized regression (GREG) estimators, with special cases
that cover many classic approaches (separate and combined ratio, separate and
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combined regression, poststratification, etc.). GREG can be written in a
weighted form,

GREG ykð Þ ¼
X
k2s

1
pk
þ
�

Tx � HT xkð Þ
�> X

k2s

xkx>k
pk

 !�1
xk

pk

8<:
9=;yk

¼
X
k2s

xksyk;

where the GREG weights fxksgk2s do not depend on y and can be applied
generically to any response variable. These multipurpose weights have the
property that they are calibrated to the population x-totals, GREGðx>k Þ ¼P

k2U x>k , so that any y-variables with approximate linear relationships with x
should be well-estimated.

GREG yields these nice properties of “generic” weights under mild data
requirements: the complete microdata ðpk; x>k ; ykÞ for k 2 s but only totals
Tx ¼

P
k2U xk for the population. What about for other MA estimators? What

data are needed and can multipurpose weights be obtained?
It is useful to divide MA approaches other than linear (GREG) into two sets:

(A) those that are nearly linear, up to the values of a few unknown parameters,
and (B) all others, featuring strong nonlinearity or many unknown parameters
(including algorithmic approaches).

Among the nearly linear MA estimators of set (A), GREG-like weights can
be obtained once values for a small number of unknown parameters are
plugged in. These could be smoothing parameters in nonparametric regression
approaches (Breidt and Opsomer 2000; Breidt et al. 2005; Goga 2005) or var-
iance parameters in linear mixed models (LMMs). To illustrate, the LMM
working model with a single unknown parameter is yk ¼ x>k bþ z>k bþ ek,
where b � ð0; k�2QÞ, and Q is positive definite and known. Let c>k ¼ ½x>k ; z>k �
and K ¼ blockdiagð0; k2Q�1Þ. Then, the MA estimator based on the LMM is

LMM ykð Þ ¼
X
k2s

1
pk
þ
�

Tc � HT ckð Þ
�> X

k2s

ckc>k
pk
þ K

 !�1
ck

pk

8<:
9=;yk

¼
X
k2s

xksyk:

Once k is specified, the LMM weights fxksgk2s are completely determined
and can be applied to any y. Like the GREG, the LMM requires complete
microdata ðpk; x>k ; z

>
k ; ykÞ for k 2 s but only totals Tc ¼

P
k2U ½x>k ; z>k � for the

population.
Options for the parameters for a nearly linear approach include choices that

are highly tuned to a specific y-variable of interest, or some compromise
among a set of interesting ys, or a choice based on some criterion such as
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penalization. In the single-parameter case above, for example, k can be inter-
preted as a penalty. The covariates xk are unpenalized, so the calibration
LMMðxkÞ ¼ Tx holds, but LMMðzkÞ 6¼ Tz due to the penalization. If k! 0,
then there is no penalty, the LMM reverts to GREG on ck, and
LMMðzkÞ ! Tz. The LMM approach is sufficiently broad to cover ridge cali-
bration (Beaumont and Bocci 2008), in which penalization relaxes calibration
constraints, and penalized splines (Breidt et al. 2005), in which penalization
equates to the degrees of freedom for smoothness of the approximating
function.

Examples of MA approaches in set (B) include those based on generalized
linear models and other parametric methods (Lehtonen and Veijanen 1998;
Kennel and Valliant 2021), neural nets (Montanari and Ranalli 2005), single-
index models (Wang 2009), generalized additive models (Opsomer et al.
2007), semiparametric additive models (Breidt et al. 2007), nonparametric
additive models (Wang and Wang 2011), LASSO (McConville et al. 2017),
and tree-based methods (Toth and Eltinge 2011; McConville and Toth 2019;
Dagdoug et al. 2023). In some of these cases, special-purpose approximations
can be employed to obtain multipurpose weights (e.g., McConville et al.
2017). Often, however, the model calibration method of Wu and Sitter (2001)
is used to obtain weights, by using GREG with model predictions as the cova-
riates. The model calibration method could use one model to predict one y, or
multiple models to predict one y, or multiple models to predict multiple ys, if
constructing a compromise set of weights.

As usual, complete microdata ðpk; x>k ; ykÞ for k 2 s are required for set (B)
methods. Unlike linear or nearly linear cases, complete auxiliary data fxkgk2U

for the population are also needed. Summary totals will not suffice. Though
complete auxiliary data are required, it is not necessary to match the auxiliary
data for the sample to the auxiliary data for the population; that is, the model-
based prediction (summed over the population) and the design-bias adjustment
(summed over the sample) in the MA form can be computed entirely sepa-
rately, which is sometimes useful in practice.

In the linear case, GREG weights do not depend on any particular response
y except in the choice of covariates. In the nearly linear cases (A), the weights
depend on y through the choice of covariates and also possibly through the
estimation or selection of the tuning parameters. The remaining cases (B) are
more y-specific, as they may depend on the estimation of more parameters as
well as on model-based predictions of y, if using model calibration.
Nonetheless, multipurpose weights are available in each case.

The data needs and availability of multipurpose weights may not be entirely
clear to practitioners, and this lack of clarity plus inertia might lead to under-
utilization of available MA techniques. Default methods are often some type of
raking to population counts, and this default does not always reflect limitations
of available control data.
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While the emphasis in this discussion has been MA estimation, which uses
flexible models and methods robust to model misspecification to take advant-
age of auxiliary information, similar ideas apply in other uses of models in sur-
veys. Methods must be rigorously stress-tested offline prior to production
mode. Academic researchers can do this to some extent using artificial data-
generating mechanisms that are completely unlike the model assumed for the
methodological development. But practitioners can always help out by creating
test challenges, using real data directly or to build simulation engines for gen-
erating test data with realistic scale and complexity. A recent example is
Benoit-Bryan and Mulrow (2021), who simulated replicate probability and
nonprobability samples using data from a real study called Culture and
Community in a Time of Crisis, which evaluated behaviors and attitudes dur-
ing the global COVID-19 pandemic. The data are available via the Open
Science Framework (https://osf.io/ygpzm/).

Professor Valliant’s review of the evolution of the use of models in survey
sampling reflects the longstanding approach of the entire field: theory and prac-
tice generate creative ideas that are met with both openness and cautiousness.
With this approach, the field will continue to evolve to address new
challenges.
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