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ABSTRACT
The WHO Collaborating Centre for International Drug Mon-
itoring in Uppsala, Sweden, maintains and analyses the world’s
largest database of reports on suspected adverse drug reac-
tion incidents that occur after drugs are introduced on the
market. As in other post-marketing drug safety data sets,
the presence of duplicate records is an important data qual-
ity problem and the detection of duplicates in the WHO
drug safety database remains a formidable challenge, espe-
cially since the reports are anonymised before submitted
to the database. However, to our knowledge no work has
been published on methods for duplicate detection in post-
marketing drug safety data. In this paper, we propose a
method for probabilistic duplicate detection based on the
hit-miss model for statistical record linkage described by
Copas & Hilton. We present two new generalisations of the
standard hit-miss model: a hit-miss mixture model for er-
rors in numerical record fields and a new method to handle
correlated record fields. We demonstrate the effectiveness of
the hit-miss model for duplicate detection in the WHO drug
safety database both at identifying the most likely duplicate
for a given record (94.7% accuracy) and at discriminating
duplicates from random matches (63% recall with 71% pre-
cision). The proposed method allows for more efficient data
cleaning in post-marketing drug safety data sets, and per-
haps other applications throughout the KDD community.
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1. INTRODUCTION
The WHO Collaborating Centre for International Drug

Monitoring in Uppsala, Sweden (also known as the Upp-
sala Monitoring Centre) holds the world’s largest database
of spontaneous reports on suspected adverse drug reaction
(ADR) incidents. Spontaneous reports are provided to phar-
maceutical companies and regulatory bodies by health pro-
fessionals upon the observation of suspected ADR incidents
in clinical practice. The 75 member countries of the WHO
Programme for International Drug Monitoring routinely for-
ward ADR case reports submitted to their medical products
agencies to the Uppsala Monitoring Centre. The first case
reports in the WHO drug safety database date back to 1967
and as of January 2005 there are over 3 million reports in
total in the data set; currently around 200,000 new reports
are added to the database each year.

While the analysis of spontaneous reporting data is one
of the most important methods for discovering previously
unknown safety problems after drugs are introduced on the
market [16], it is sometimes impaired by poor data qual-
ity [11], and in particular the presence of duplicate case
reports. Quantitative methods are important in screening
spontaneous reporting data for new drug safety problems [1],
and may highlight potential problems based on as few as 3
case reports on a particular event, so the presence of just
1 or 2 duplicates may severely affect their efficacy. While
there is a general consensus that the presence of duplicates
is a major problem in spontaneous reporting data, there is
a lack of published research with respect to the extent of
the problem. A study on vaccine ADR data quoted propor-
tions of around 5% confirmed duplicates [14]. However, at
times the frequency may be much higher: in a recent re-
view of suspected quinine induced thrombocytopenia, FDA
researchers identified 28 of the 141 US case reports (20%)
as duplicates [6].



There are at least two common causes for duplication in
post-marketing drug safety data: different sources (health
professionals, national authorities, different companies) may
provide separate case reports related to the same event and
there may be mistakes in linking follow-up case reports to
earlier records. (Follow-up reports are submitted for exam-
ple when the outcome of an event is discovered.) The risk
of duplication is likely to have increased in recent years due
to the advent of information technology that allows case re-
ports to be sent back and forth more easily between different
organisations [8], and the transfer of case reports from na-
tional centres to the WHO might introduce extra sources of
error, including the risk that more than one national centre
provide case reports related to the same event.

Duplicate records are typically much more similar than
random pairs of records. There are however important ex-
ceptions. For example, separate case reports are sometimes
provided for the same patient recorded at the same doctor’s
appointment when the patient has suffered from unrelated
ADRs. Such record pairs may match perfectly on date, age,
gender, country and drug substances, but should not be con-
sidered as duplicates. The opposite problem is illustrated by
so called mother-child reports that relate to ADR incidents
in small children from medication taken by the mother dur-
ing pregnancy. Such record pairs differ greatly depending
on whether the patient information relates to the mother or
the child.

The need for algorithms to systematically screen for du-
plicate records in drug safety data sets is clear [5]. There
are no published papers in this area, but general duplicate
detection methods are available [3, 10, 12, 17]. In addi-
tion, the fundamentally similar problem of record linkage
(matching records across data sets) has been studied since
the 1960s [9, 13]. We have chosen to develop a duplicate de-
tection method based on the hit-miss model for statistical
record linkage described by Copas & Hilton [7]. The hit-
miss model has several important beneficial properties. It
imposes no strict criteria that a pair of records must fulfil
in order to be highlighted as suspected duplicates, which is
useful for spontaneous reporting data where errors occur in
all record fields. Rather than just classifying record pairs as
likely duplicates or not, the hit-miss model provides a priori-
tisation (scoring) with respect to the chance that a given pair
of records are duplicates. This allows the number of record
pairs highlighted to be adjusted depending on the resources
available for manual review. While the hit-miss model pun-
ishes discrepancies it rewards matching information, which
ensures that identical record pairs with very little data listed
are unlikely to be highlighted for follow-up at the expense of
more detailed record pairs with slight differences. Further-
more, the reward for matching information varies depending
on how common the matching event is, so that for example
a match on a rare adverse event is considered stronger ev-
idence than a match on gender. The fact that most of the
hit-miss model parameters are determined by the properties
of the entire data set reduces the risk of over-fitting the al-
gorithms to training data, which is very important for the
WHO database, where the amount of labelled training data
is limited.

The aim of this paper is to propose two new improve-
ments to the standard hit-miss model (a model for errors
in numerical record fields and a computationally efficient
approach to handling correlated record fields) and to show
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Figure 1: Wjj(βj) based on (8), for several values of
a and b

that the adapted hit-miss model is very useful in real world
duplicate detection. We fit the hit-miss model to the WHO
drug safety database, and evaluate its performance on a test
set of real world database records that includes a certain
proportion of known duplicates.

2. METHODS

2.1 The hit-miss model

2.1.1 The standard hit-miss model
The hit-miss model is a probability model for how dis-

crepancies between database records that relate to the same
underlying event occur. Let X = j and Y = k denote the
observed values on two database records for a certain record
field and let pj and pk denote the corresponding probabili-
ties. The joint probability for this pair of values under the
independence assumption is pj ·pk. The hit-miss model pro-
vides an estimate pjk for the same probability under the
assumption that the two records are duplicates. The contri-
bution from each record field (its weight) to the total match
score is equal to the log-likelihood ratio for the two hypothe-
ses (high values correspond to likely duplicates):

Wjk = log2

pjk

pjpk
(1)

and the total match score is found by adding together the
weights for all different record fields.

Under the hit-miss model, each observed record field value
X is based on a true but unobserved event T . Observed
values are assumed to be either misses, blanks or hits. Misses
occur with probability a, blanks with probability b and hits
with probability 1−a−b. For a miss X is a random variable
following the overall incidence of T , for a blank the value of
X is missing and for a hit X = T .

Let P (T = i) = βi and let P (X = j | T = i) = αji. The
following holds generally under the assumption that X and
Y are independent conditional on T :

pjk =
X

i

αjiαkiβi (2)



Outcomes Probability Distribution
H,H (1 − a1 − a2 − b)2 δ(d)
H,D 2a1(1 − a1 − a2 − b) φ(d; 0, σ2

1)
D,D a2

1 φ(d; 0, 2σ2
1)

H,M 2a2(1 − a1 − a2 − b) f(d)
M,M a2

2 f(d)
D,M 2a1a2 approx f(d)

Table 1: Outcomes of interest (H=hit, D=deviation,
M=miss) in the hit-miss mixture model, together
with associated probabilities and distributions for d.

Under the hit-miss model:

αji =

8

<

:

aβj j 6= i

1 − b − a(1 − βj) j = i

b j blank
(3)

and it can be shown that if c = a(2 − a − 2b):

pjk =

8

>

>

<

>

>

:

cβjβk j 6= k

βj{(1 − b)2 − c(1 − βj)} j = k

b(1 − b)βk j blank
b2 j, k blank

(4)

Based on (4):

P (X = j) = (1 − b) · βj (5)

P (X blank) = b (6)

P (discordant pair) = c · (1 −
X

i

β
2
i ) (7)

Thus, for a given record field, we estimate b by its relative
frequency of blanks in the entire database and βi by its rel-
ative frequency of value i among non-blanks in the entire
database. c is estimated by the relative frequency of discor-
dant pairs for this record field among non-blanks in the set
of identified duplicate pairs, divided by 1 −

P

i β2
i .

(3), (4) and (5) give:

Wjk =

8

<

:

log2 c − 2 log2(1 − b) j 6= k

log2{1 − c(1 − βj)(1 − b)−2} − log2 βj j = k

0 j or k blank

(8)

Thus, all mismatches for a given record field receive the same
weight and blanks receive weight 0. It can be shown that
matches on rare events receive greater weights than matches
on more common events (Wjj decreases when βj increases)
as would intuitively be expected. The detailed behaviour of
Wjj as a function of βj is illustrated in Figure 1 for different
values of a and b.

2.1.2 A hit-miss mixture model for errors in numeri-
cal record fields

For numerical record fields such as date and age, many
types of error are more likely to yield small differences be-
tween true and observed values. If, for example, two differ-
ent sources send separate case reports related to the same
incident, the dates may perhaps disagree, but it is more
likely that they should differ by a few days than by several
years. Similarly, the registered age for patient sometimes
differs from the true value, but then a small difference is
more likely than a large one. At the same time, there may

1. Make initial guesses for the parameters â1, â2 and
σ̂2

1

2. Expectation step: Calculate α̂1, . . . , α̂4:

α̂1 = (1 − â1 − â2 − b̂)2

α̂2 = â2(2 − 2b̂ − â2)

α̂3 = 2â1(1 − â1 − â2 − b̂)
α̂4 = â2

1

For each observed di in training data, compute
the probability that it belongs to each mixture
component

γ̂1(di) = α̂1δ(di)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂2(di) = α̂2f(di)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2

1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂3(di) =
α̂3φ(di;0,σ̂2

1
)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂4(di) =
α̂4φ(di;0,2σ̂2

1
)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

3. Maximisation step: Calculate the weighted vari-
ance σ̂2

1 :

σ̂2
1 =

Pn
i=1

γ̂3(di)·d
2

i +γ̂4(di)·d
2

i /2
P

n
i=1

γ̂3(di)+γ̂4(di)

Update â1 and â2 by numerical maximisation of
the total likelihood for the observed data over el-
igible value pairs (such that â1 + â2 + b̂ < 1).

4. Iterate 2-3 until convergence

Table 2: EM algorithm for the hit-miss mixture
model.

be other types of errors (e.g. typing errors) where a large
numerical difference is as likely as a small one. In order
to handle both possibilities, we propose a hit-miss mixture
model which includes a new type of miss for which small
deviations from the true value are more likely than large
ones. To distinguish between the two types of misses in this
model, we refer to the first type as ’misses’ and the second
type as ’deviations’. If T is the true, but unobserved value,
then X is a random variable assumed to have been generated
through a process that results in a deviation with probabil-
ity a1, a miss with probability a2, a blank with probability
b and a hit with probability 1 − a1 − a2 − b. For a devia-
tion, X follows a N(T, σ2

1) distribution and for a miss, X

is a random variable independent of T but with the same
distribution. For a blank, the value of X is missing and for
a hit, X = T .

For two observed numerical values X = i and Y = j,
we focus on the difference d = j − i. For duplicates we
must distinguish between 6 possible outcomes for the hit-
miss mixture model as listed in Table 1 where φ(d;µ, σ2)
denotes a normal distribution with mean µ and variance σ2

and δ(d) denotes Dirac’s delta function, which has all its
probability mass centred at 0. f(d) denotes the probability
density function for the difference between two independent
random events that follow the same distribution as T , such
as for example a hit and a miss. Under the assumption that
var(T ) � σ2

1 , the difference between a miss and a deviation
approximately follows this distribution.

Thus, the hit-miss mixture model for the difference d be-
tween the numerical values for two duplicates can be reduced



to four components:

pd(d) = (1 − a1 − a2 − b)2 · δ(d) + a2(2 − a2 − 2b) · f(d)+

+ 2a1(1 − a1 − a2 − b) · φ(d; 0, σ
2
1) + a

2
1 · φ(d; 0, 2σ

2
1)
(9)

For unrelated records, d follows the more simple distribu-
tion:

pu(d) = (1 − b)2 · f(d) (10)

and we can calculate log-likelihood ratio based weights W (d)
by integrating (9) and (10) over an interval corresponding to
the precision of d (for two observed ages, for example, over
d±1 years) and taking the logarithm of the ratio of integrals.
As in the standard hit-miss model, single or double blanks
receive weight 0.

In practice, f(d) must be estimated from training data
(often a normal approximation is acceptable) and the prob-
ability for a blank b is estimated by the relative frequency of
blanks in the entire database. To estimate the other param-
eters, an EM mixture identifier can be used. The restriction
that the four mixture proportions be determined by a1 and
a2 complicates the maximisation step of the EM algorithm,
but can be accounted for in numerical maximisation. For a
detailed outline of EM hit-miss mixture identification, see
Table 2.

2.1.3 A method to handle correlated record fields
The standard hit-miss model assumes independence be-

tween record fields and this allows the total match score
for a record pair to be calculated by simple summation of
the weights for individual record fields. The independence
assumption may, however, lead to over-estimated evidence
that two records that match on a set of strongly correlated
fields are duplicates, and this may hinder effective duplicate
detection.

To reduce the risk for high total match scores driven solely
by a group of correlated record fields, we propose a model
that accounts for pairwise associations between correlated
events. Let j1, . . . , jm denote a set of events related to differ-
ent fields on the same database record. In the independence
model, the probability that these events should co-occur on
a record is:

P (j1, . . . , jm) =

m
Y

t=1

P (Xt = jt) =

=

m
Y

t=1

(1 − bt)
−1

βjt (11)

The corresponding total contribution to the match score is:

m
X

t=1

Wjtjt =
m

X

t=1

log2{1 − ct(1 − βjt )(1 − bt)
−2} −

m
X

t=1

log2 βjt

(12)

but this is based on the assumption that the information in
the different record fields can be considered independently.

If no assumption of independence can be made, the joint
probability for the set of events j1, . . . , jm can only be ex-
pressed as:

P (j1, . . . , jm) = P (j1) · P (j2 | j1) · P (j3 | j1, j2)·

· . . . · P (jm | j1, . . . , jm−1) (13)

However, the amount of data required to reliably estimate
P (jm | j1, . . . , jm−1) increases rapidly with m. As a compro-
mise we propose the following approximation that accounts
for pairwise associations only:

P (j1, . . . , jm) = P (j1) ·

m
Y

t=2

max
s<t

P (jt | js) (14)

For correlated record fields, (14) may be used instead of (11)
to model the joint distribution. Let:

j
∗

t = argmax
js:s<t

P (jt | js) (15)

β
∗

jt
= (1 − bt)

−1 · P (jt | j
∗

t ) (16)

Then:

W
∗

jj = log2{1 − c(1 − β
∗

j )(1 − b)−2} − log2 β
∗

j (17)

and:
m

X

t=1

W
∗

jtjt
=

m
X

t=1

log2{1 − ct(1 − β
∗

jt
)(1 − bt)

−2} −
m

X

t=1

log2 β
∗

jt

≈
m

X

t=1

log2{1 − ct(1 − βjt )(1 − bt)
−2} −

m
X

t=1

log2 β
∗

jt

=
m

X

t=1

Wjtjt −
m

X

t=1

log2

β∗

jt

βjt

(18)

Thus, the adjusted match score can be calculated by sub-
tracting a sum of compensating terms from the original
match score. Each compensating term can be written on
the following form:

log2

β∗

jt

βjt

= log2

P (jt | j∗t )

P (jt)
(19)

and a shrinkage estimate for this log-ratio has earlier proven
useful, as robust strength of association measures to find
interesting associations in the WHO drug safety database [1,
15]. This strength of association measure is referred to as
the IC and is defined as [1, 15]:

ICij = log2

P (j | i)

P (j)
(20)

Shrinkage is achieved through Bayesian inference with a
prior distribution designed to moderate the estimated IC

values toward the baseline assumption of independence (IC =
0) [1, 15]. The advantage of using IC values rather than raw
observed-to-expected ratios is that they provide less volatile
estimates when little data is available. In order to provide
more robust scoring of correlated record fields, we propose

IC shrinkage estimates be used to estimate log2

β∗

jt

βjt

in (18).

The ordering of events j1, . . . , jm may affect the magni-
tude of the compensating term in (18) since conditioning
is only allowed on preceding events in the sequence. As
a less arbitrary choice of ordering, we propose the set be
re-arranged in decreasing order of maximal IC value with
another event in the set of matched events.

2.2 Fitting a generalised hit-miss model to WHO
drug safety data

An adapted hit-miss model was fitted to the WHO drug
safety database based on the data available at the end of
2003, including a set of 38 manually identified groups of
duplicate records.



Record field Interpretation Type Missing data
DATE Date of onset String 23%

OUTCOME Patient outcome Discrete (7 values) 22%
AGE Patient age Numerical (years old) 19%

GENDER Patient gender Discrete (2 values) 8%
DRUGS Drugs used 14,280 binary events 0.08%
ADRS ADRs observed 1953 binary events 0.001%

COUNTRY Reporting country Discrete (75 values) 0%

Table 3: Record fields used for duplicate detection in the WHO database.
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Figure 2: Empirical distributions for ages and dates on records in the WHO database, as well as empirical
f(d) functions together with fitted normal distributions.

2.2.1 Implementation
Although the WHO database allows for the transmission

and storage of a large amount of data for each individual case
report, there are few records that have even the majority of
the fields filled in [1]. However, all records in the data set
have at least one drug substance, one ADR term and the
reporting country listed. For the identification of possible
duplicate records, the following record fields were considered
the most relevant: date of onset, patient age, patient gender,
reporting country, patient outcome, drug substances used
and ADR terms observed (drug substances and ADR terms
are in fact sets of binary events related to the presence or
absence of each). Table 3 lists basic properties for these
record fields.

Some data pre-processing was required. Onset dates are
related to individual ADR terms, and although there tends
to be only one distinct onset date per record, there are 1184
records (0.04% of the database) that have different onset
dates for different ADR terms; for those records, the earli-
est listed onset date was used. For the gender and outcome
fields “-” had sometimes been used to denote missing val-
ues, and was thus re-encoded as such. Similarly, gender
was sometimes listed as N/A which was also considered a
missing value. For the age field, a variety of non-standard
values were interpreted as missing values and re-encoded as
such. Sometimes different age units had been used so in or-
der to harmonise the ages, they were all re-calculated and
expressed in years. Observed drug substances are listed as
either suspected, interactive or concomitant, but since this
subjective judgement is likely to vary between reporters, this
information was disregarded.

For large data sets, it is computationally intractable to
score all possible record pairs. A common strategy is to
group the records into different blocks based on their val-
ues for a subset of important record fields and to only score
records that are within the same block [9]. For the WHO
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Figure 3: Fitted hit-miss mixture model weight
functions for age and date, respectively. Note the
discrete jump in the weight functions at d = 0.

database, we block records based on drug substances crossed
with ADR types so that only record pairs that have at least
one drug substance in common and share at least one ADR
type (as defined by the System Organ Class, which is a
higher level grouping of ADR terms) are scored. In addition
to the improvement in computational efficiency, this also re-
duces the risk for false leads generated by almost identical
non-duplicate database records that refer to different reac-
tions in the same patient (see Section 1). While blocking
may in theory yield extra false negatives, duplicate records
that don’t match on at least one drug substance and an
ADR type are very unlikely to receive high enough match
scores to exceed the threshold for manual review.

2.2.2 Model fitting
The majority of the hit-miss model parameters are esti-

mated based on the entire data set, but c, a1 and a2 rely on
the characteristics of identified duplicate records. For the
WHO drug safety database there were 38 groups of 2-4 sus-
pected duplicate records available for this purpose. These
had been identified earlier by manual review.



Record field â b̂ Wjk Maximum Wjj value Minimum Wjj value
GENDER 0.051 0.080 -3.22 1.22 (Male) 0.68 (Female)

COUNTRY 0.036 0.000 -3.80 18.45 (Iceland) 1.03 (USA)
OUTCOME 0.101 0.217 -2.05 8.19 (Died unrelated to reaction) 0.97 (Recovered)

DRUGS 0.107 0.001 -2.30 21.23 (non-unique) 4.77 (acetylsalicylic acid)
ADRS 0.387 0.000 -0.68 20.14 (non-unique) 2.77 (rash)

Table 4: Some parameters for the hit-miss model fitted to the WHO database. The Wjk value is the weight
for a mismatch in that particular record field. The listed Wjj values are the maximum and minimum weights
for matches on events in that particular record field.

Standard hit-miss models were fitted to the gender, coun-
try and outcome record fields. Separate hit-miss models
were fitted for individual drug substances and ADR terms,
but b and c was estimated for drug substances as a group
and for ADR terms as a group (c was estimated based on
(7) where

P

β2
i was replaced by the average

P

β2
i for the

group). Some of the fitted hit-miss model parameters are
displayed in Table 4. As expected, matches on common
events such as female gender receive much lower weights
than matches on more rare events such as originating in
Iceland. The penalty for mismatching ADR terms is signifi-
cantly lower than that for mismatching drug substances, be-
cause discrepancies are more common for ADR terms. This
is natural since the categorisation of adverse reactions re-
quires clinical judgement and is more prone to variation.

For the numerical record fields age and date, hit-miss mix-
ture models as described in Section 2.1.2 were fitted. Fig-
ure 2 shows empirical distributions in the WHO database
for age and date together with the corresponding f(d) func-
tions (note as an aside the digit preference on 0 and 5 for
age). Since the empirical f(d) functions for both age and
date are approximately normal and since they must be sym-
metrical by definition (d = j− i and i and j follow the same
distribution), we assume normal f(d) functions with mean
0 for both age and date. The variances were estimated by:

σ̂
2
2 =

Pn
i=1 d2

i

n
(21)

where n is the number of record pairs on which the estimate
is based. EM mixture identification as outlined in Table 2
with the estimated values for b and σ2

2 and with starting val-
ues â1 = 0.1 and â2 = 0.1 yielded the following parameters
for the hit-miss mixture model for age:

â1 = 0.036 â2 = 0.010 b̂ = 0.186

σ̂1 = 2.1 σ̂2 = 32.9 (22)

and for date:

â1 = 0.051 â2 = 0.010 b̂ = 0.229

σ̂1 = 50.2 σ̂2 = 3655 (23)

Because of the limited amount of training data available, we
enforced a lower limit of 0.01 for both â1 and â2. Thus, even
though no large deviations in age and date were observed
in our training data, the possibility of large errors in these
record fields is not ruled out.

A problem with onset date is that quite a large proportion
of the records in the data set (> 15%) have incomplete but
not altogether missing information (such as 2002-10-? or
1999-?-?). This is straightforwardly taken care of in the
hit-miss mixture model by integrating over a wider interval,

when calculating the weight. For example, to compare dates
2002-10-? and 2002-10-12, we integrate (9) and (10) from
-12 to 20. In practice, this leads to weights around 4.5 for
matches on year when information on day and month are
missing on one of the records and to weights around 8.0
for matches on year and month when information on day is
missing on one of the records.

There tend to be strong correlations between drug sub-
stances and ADR terms (groups of drug substances are of-
ten co-prescribed and certain drug substances cause cer-
tain reactions) so IC based compensation according to Sec-
tion 2.1.3 was introduced for drug substances and ADR
terms as one group.

2.2.3 A match score threshold
Under the hit-miss model, the match score correlates with

the probability that two records are duplicates. In order to
convert match scores to probabilities, we use a simple form
of the mixture model discussed by Belin & Rubin [2]. The
assumption is that the match scores for duplicate records
follow one normal distribution and the match scores for non-
duplicate records follow a different normal distribution. For
the WHO database, the empirical match score distributions
are approximately normal. We estimated the match score
mean and variance for duplicates based on the scores for the
38 duplicates in training data (see Section 2.2.2):

µ̂s2
= 42.96 σ̂s2

= 15.73 (24)

and for non-duplicates based on a random sample of 10,000
record pairs:

µ̂s1
= −18.50 σ̂s1

= 8.55 (25)

The only relevant data available to estimate the overall
proportion of duplicates in the data set was the study of du-
plicate records in vaccine spontaneous reporting data [14],

which found duplication rates around 0.05. Based on P̂ (dup) =
0.05 and the estimated match score distributions, we used
Bayes formula to compute the probability that a given match
score s corresponds to a pair of duplicates:

P (dup | s) =
0.05 · φ(s, µ̂s2

, σ̂s2
)

0.05 · φ(s, µ̂s2
, σ̂s2

) + 0.95 · φ(s, µ̂s1
, σ̂s1

)
(26)

In order to obtain an estimated false discovery rate of
below 0.05, the match score threshold for likely duplicates
was set at 37.5 since P (dup | 37.5) = 0.95 according to (26).

2.2.4 Experimental setup
One experiment was carried out to evaluate the perfor-

mance of the adapted hit-miss model in identifying the most



Onset date Age Gender Country Outcome Drug substances ADR terms Score
? 62 M USA Died 3 in total 6 in total -

1997-08-?? ? M USA Died 3 of 3 3 of 6 + 1 25.19
1999-06-09 62 M USA Died 2 of 3 + 1 2 of 6 + 4 23.66
1997-09-?? 62 M USA Died 3 of 3 + 3 2 of 6 + 4 22.92 *
1995-11-29 ? M USA Died 2 of 3 3 of 6 + 2 22.82
1997-08-25 ? M USA Died 2 of 3 3 of 6 + 3 22.74

Table 5: The first difficult template record together with the top 5 records in its list of potential duplicates
according to the hit-miss model. The test record is marked with an asterisk.

Onset date Age Gender Country Outcome Drug substances ADR terms Score
1997-08-23 40 F USA Died 5 in total 4 in total -
1997-08-23 40 F USA Died 5 of 5 1 of 4 + 4 47.28
1997-08-23 40 ? USA Died 4 of 5 2 of 4 + 3 45.75
1997-08-23 40 ? USA Unknown 5 of 5 0 of 4 + 4 37.78
1997-08-?? ? M USA Died 3 of 5 3 of 4 + 1 28.52

? 40 F USA Died 3 of 5 3 of 4 + 3 27.09 *

Table 6: The second difficult template record together with the top 5 records in its list of potential duplicates
according to the hit-miss model. The test record is marked with an asterisk.

likely duplicates for a given database record. The test data
set consisted of the 38 groups of identified duplicates de-
scribed in Section 2.2.2 and to avoid dependence between
training cases, we only used the two most recent records
in each group. The most recent record was designated the
template record and the second most recent record was des-
ignated the test record. In the experiment, each template
record was scored against all other records within its block
(see Section 2.2.1) in the entire WHO database to see if any
other record received a higher match score with the template
record than the test record. While the same data set had
been used in fitting the hit-miss model, its only impact had
been on the proportion of misses in different record fields,
so the risk for bias in the performance estimates is slight.

Another experiment was carried out to evaluate the per-
formance of the hit-miss model in discriminating duplicates
from random record pairs based on the threshold of 37.5
derived in Section 2.2.1. The test set used in the first exper-
iment could not be used to evaluate the threshold since this
data had been used to determine the threshold. However,
Norway who is one of the few countries that label duplicate
records on submission, had in their last batch in 2004 indi-
cated 19 confirmed duplicates. This allowed for an indepen-
dent evaluation of the duplicate detection method. Match
scores were calculated for all record pairs within the same
block (see Section 2.2.1) and those with scores that exceeded
the 37.5 threshold were highlighted as likely duplicates.

3. RESULTS

3.1 Duplicate detection for a given database
record

The performance at duplicate detection for a given database
record was evaluated based on whether or not it was the test
record that received the highest match score together with
the template record. This was the case for 36 out of the 38
record pairs (94.7%). The two template records for which
the test record was not top ranked are listed in Table 5 and

Table 6 together with the most likely duplicates as indi-
cated by the hit-miss model. For the first difficult template
record, there are no strong matches, and based on a superfi-
cial examination, the two top ranked records which are not
known duplicates seem as plausible as the test record which
is a confirmed duplicate. Thus, while its performance was
imperfect for this template record, the hit-miss model’s pre-
dictions are at least in line with intuition. For the second
difficult template record, there are strong matches (match
scores ranging from 37.78 to 47.28) with 3 records that are
not confirmed duplicates. While these may well be false pos-
itive, they could also be undetected duplicates: the records
match on most of the fields and although some of the ADR
terms differ, a more careful analysis shows that the listed
ADR terms relate to liver and gastric problems. Thus, while
the hit-miss model failed to identify the known duplicate for
this template record, it may have identified 3 that are cur-
rently unknown.

3.2 Discriminant duplicate detection
There was a total of 1559 case reports in the last batch

from Norway in 2004. The median match score for the 19
known pairs of duplicates was 41.8 and the median match
score for all other record pairs (after blocking) was -4.8.
Figure 4 displays the match score distributions for the two
groups. All in all, 17 record pairs had match scores above
37.5 and out of these, 12 correspond to known duplicates
and 5 to other record pairs. Thus, the recall of the algo-
rithm in this experiment was 63% (12 of the 19 confirmed
duplicates were highlighted) and the precision was 71% (12
of the 17 highlighted record pairs are confirmed duplicates).
However, the threshold of 37.5 was set based on the assumed
5% rate of duplicates in the data set, and following the dis-
cussion of precision-recall graphs by Bilenko & Mooney [4]
Figure 5 indicates how the precision and the recall varies
with different thresholds (an estimated 20% rate of dupli-
cates would give a 35.2 threshold, an estimated 10% rate of
duplicates would give a 36.5 threshold and an estimated 1%
rate of duplicates would give a 39.6 threshold). To achieve
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Figure 4: Match score distributions for known dupli-
cates and other record pairs in the Norwegian batch,
normalised in order to integrate to 1.
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Figure 5: Precision and recall as functions of the
threshold, for the discriminant analysis experiment
on Norwegian data. The dotted line indicates the
selected threshold.

the minimum total number of errors, 11 (2 false positives
and 9 false negatives), a threshold between 40.7 and 41.7
must be used. Precision normally tends to 1 as the thresh-
old is increased, but this is not the case in Figure 5, because
the highest match score actually corresponds to a pair of
records that were not known duplicates. Table 7 lists the
three record pairs with highest match scores among record
pairs that were not confirmed duplicates and Table 8 lists
the three record pairs with lowest match scores among con-
firmed duplicate record pairs.

3.3 Computational requirements
The experiments were run on a workstation equipped with

a 2.2 GHz P4 processor and 1 GB of RAM. Efficient use of
the available hardware and optimised data structures re-
duced computing time and memory requirements so that
the initial data extraction and model fitting required a total
of 50 minutes. To score a single pair of database records
took 6 µs, and to score a database record against the rest of
the data set took about 1 second (average block size in the
order of 100,000 records). The scoring for all record pairs
in the Norwegian data subset (1559 database records), after
blocking, took 27 seconds.

4. DISCUSSION
The hit-miss model as implemented on WHO data pro-

duced very promising results. For records that are known
to have a duplicate, the hit-miss model reliably highlighted
the corresponding record (94.7% accuracy). However, only a
small proportion of database records have duplicates, so high
ranked records are not necessarily duplicates, and in order
for the method to be truly effective at duplicate detection,
it needed to provide an absolute estimate for the proba-
bility that two records are duplicates. The 63% recall and
71% precision in Section 3.2 indicate that the hit-miss model
identified the majority of known duplicates, while generating
few false leads, which demonstrates its practical usefulness.

The hit-miss model did fail to highlight 7 known dupli-
cates in the Norwegian batch, but from Table 8 it is clear
that the amount of information on these records is very
scarce: ages, outcomes and onset dates are missing on at
least one of the records in each pair and while there are a
few matching drug substances and ADR terms, there are at
least as many unmatched ones. The lowering of the thresh-
old required to highlight all these duplicates would yield an
unmanageable proportion of false leads. We anticipate that
any method would require non-anonymised data to be able
to identify such duplicates, since lack of data cannot be com-
pensated for with advanced algorithms. This emphasises the
need for improved quality of case reports.

Five of the record pairs highlighted in the Norwegian batch
were not confirmed duplicates. One of these received the
highest match score in the experiment (the top one in Ta-
ble 7), but did not seem like an obvious pair of duplicates:
outcomes are missing, onset dates and ages are close but
don’t match and none of the registered ADR terms match.
On the other hand, 6 out of the 7 drug substances on these
two records are the same and this is what generated the
unusually high match score. These drug substances are
not particularly commonly co-reported (the pairwise asso-
ciations between them are weak) which further strengthens
the evidence. In order to determine the true status of this
record pair, we subsequently contacted the Norwegian na-
tional centre who confirmed that it was indeed a pair of du-
plicates: two different physicians at the same hospital had
provided separate case reports for the same incident. This
demonstrates that the hit-miss model may account for prob-
abilistic aspects of data that are not immediately clear from
manual review and that the hit-miss mixture model’s treat-
ment of small deviations in numerical record fields may be
very useful in practice. The Norwegian centre also provided
information on the 4 other record pairs of unknown status
that had been highlighted in the study: the record pair with
the second highest match score was reported to be a likely
but yet unconfirmed duplicate whereas the other three high-
lighted record pairs were confirmed non-duplicates. How-
ever, these case reports had all been provided by the same
dentist and all referred to the same drug-ADR combina-
tion. Such case reports submitted by the same individual
will tend to be similar and difficult to distinguish from true
duplicates. With respect to duplicate detection, these record
pairs are certainly false leads, but in a different context the
detection of such clusters of case reports may be very valu-
able (since they would generally be considered less strong
evidence of a true problem than case reports from indepen-
dent sources). The Norwegian feedback indicates that the
reported 71% precision in Section 3.2 is an under-estimate.



Onset date Age Gender Country Outcome Drug substances ADR terms Score
2004-04-30 51 F NOR ?

6 matched, 1 unmatched 0 matched, 3 unmatched 76.97
2004-04-20 50 F NOR ?
2003-02-02 57 M NOR ?

3 matched, 1 unmatched 1 matched, 0 unmatched 42.88
2003-02-02 55 M NOR ?
2003-12-16 8 F NOR ?

1 matched, 0 unmatched 1 matched, 0 unmatched 40.69
2003-12-16 18 F NOR ?

Table 7: The three record pairs with highest match scores among record pairs that are not confirmed
duplicates in the Norwegian data.

Onset date Age Gender Country Outcome Drug substances ADR terms Score
? 79 F NOR ?

1 matched, 0 unmatched 1 matched, 2 unmatched 24.36
? ? F NOR ?

2003-01-07 76 F NOR ?
1 matched, 1 unmatched 1 matched, 3 unmatched 17.82

? ? F NOR ?
? 43 F NOR ?

2 matched, 2 unmatched 0 matched, 8 unmatched 14.05
? ? F NOR ?

Table 8: The three record pairs with lowest match scores among non-highlighted confirmed duplicates in the
Norwegian data.

The actual precision of the experiment was at least 76%
(13/17) and possibly even higher. The reported recall rate
may be either under- or over-estimated depending on how
many unidentified duplicates remain.

The hit-miss mixture model is a new approach to handling
discrepancies in numerical record fields. Like the standard
hit-miss model, it is based on a rigorous probability model
and provides intuitive weights. For matches, the weights
depend on the precision of the matching values: matches on
full dates receive weights around 12.0, matches on year and
month when day is missing receive weights around 8.0 and
matches on year when month and day are missing receive
weights around 3.5. Both matches and near-matches are
rewarded, and the definition of a near-match is data driven:
for the WHO database, age differences within ±1 year and
date differences within ±107 days receive positive weights
and are thus favoured over missing information. There is
a limit to how strongly negative the weight for a mismatch
will get (see Figure 3), so any large enough deviation is
considered equally unlikely. An alternative model for dates
which would be useful if typing errors were very common
is to model year, month and day of the date as separate
discrete variables. The disadvantage of this approach is that
absolute differences of just a few days could lead to very
negative weights whereas differences of several years may
yield positive weights if the two records match on month
and day. In the hit-miss model, on the other hand, a pair of
dates such as 1999-12-30 and 2000-01-02 contributes +3.18
to the match score, despite the superficial dissimilarity.

The experiments in this article were retrospective in the
sense that they evaluated the performance of the algorithms
based on what duplicates had already been identified. In
the future, we aim to do a prospective study where the hit-
miss model is used to highlight suspected duplicates in an
unlabelled data subset and follow up the results by manual
review. Such a study should allow for more accurate pre-
cision estimates and more insight into how the algorithms
may be best applied in practice.

The hit-miss model will be used routinely for duplicate
detection in in the WHO database. Database wide screens
will be carried out regularly and, in addition, duplicate de-
tection can be carried out at data entry and automatically
when a case series is selected for clinical review. The rate
limiting step in duplicate detection for post-marketing drug
safety data is the manual review required to confirm or re-
fute findings, so further testing will be necessary to deter-
mine whether the selected threshold is practically useful.

The hit-miss model fitted to the WHO drug safety database
in Section 2.2 can be used for duplicate detection in other
post-marketing drug safety data sets as well, provided they
contain similar information. An alternative approach would
be to use the methods described in this paper to fit adapted
hit-miss models directly for the data sets of interest, since
the properties of different data sets may vary and additional
record fields may be available.

5. CONCLUSIONS
In this paper we have introduced two generalisations of

the standard hit-miss model and demonstrated the useful-
ness of the adapted hit-miss model for automated duplicate
detection in WHO drug safety data. Our results indicate
that the hit-miss model can detect a significant proportion
of the duplicates without generating many false leads. Its
strong theoretical basis together with the excellent results
presented here, should make it a strong candidate for other
duplicate detection and record linkage applications.
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